News

Ocean acidification may slow the pace of tropicalization of temperate fish communities

Abstract.

"Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated[...]"

 

Source: Nature Climate Change
Authors: Ericka O. C. Coni et al.
DOI: https://doi.org/10.1038/s41558-020-00980-w

Read the full article here.


Bacteriohopanepolyols signature in sediments of the East China Sea and its indications for hypoxia and organic matter sources

Abstract.

"The bacterial biomarker group of bacteriohopanepolyols (BHPs) has shown a significant potential to track terrestrial inputs and to respond to environmental changes. A total of 12 BHPs were detected in surface sediments of the East China Sea (ECS), with the contents of 3.79–361 μg/g TOC. The spatial distribution patterns and correlation analyses of bacteriohopanetetrol (BHT) and soil marker BHPs in sediments of the ECS indicate that they were mainly derived from marine autochthonous and terrestrial sources[...]"

 

Source: Science Direct
Authors: Meiling Yin et al.
DOI: https://doi.org/10.1016/j.orggeochem.2021.104268

Read the full article here.


Effect of dissolved oxygen and hydrogen on the stress corrosion cracking behavior of alloy 600 in high temperature water

Abstract.

"The stress corrosion cracking behavior of alloy 600 was studied in high temperature water at 288°C to 360°C. The effects of dissolved oxygen (DO) and dissolved hydrogen (DH) on crack growth rate (CGR) are discussed. Results show that the CGR of alloy 600 in hydrogenated water (at the Ni/NiO phase boundary) is about 2-200 times higher than in 2 ppm O2 oxygenated water at 325°C and 360°C, while the opposite behavior was observed at 288°C. Much more severe intergranular oxidation was observed[...]"

 

Source: Science Direct
Authors: Jiamei Wang et al.
DOI: https://doi.org/10.1016/j.jnucmat.2020.152603

Read the full article here.


Impact of the Agulhas Return Current on the oceanography of the Kerguelen Plateau region, Southern Ocean, over the last 40 kyrs

Abstract.

"The oceanography of the western Indian sector of the Southern Ocean is extremely complex due to the presence of several subantartic islands and plateaus that alter the zonal flow of the Antarctic Circumpolar Current. The circulation is even more complex around the Kerguelen Islands (KI) as the hydrological fronts merge with the Agulhas Return Current, the latter transporting warm surface waters from the low latitudes to the Subantarctic Zone (SAZ) east of KI. Here we present new sea-surface and sub-surface temperatures, based on diatom and radiolarian census[...]"

 

Source: Science Direct
Authors: M.Civel-Mazens et al.
DOI:https://doi.org/10.1016/j.quascirev.2020.106711

Read the full article here.


Variable coastal hypoxia exposure and drivers across the southern California Current

Abstract.

"Declining oxygen is one of the most drastic changes in the ocean, and this trend is expected to worsen under future climate change scenarios. Spatial variability in dissolved oxygen dynamics and hypoxia exposures can drive differences in vulnerabilities of coastal ecosystems and resources, but documentation of variability at regional scales is rare in open-coast systems. Using a regional collaborative network of dissolved oxygen and temperature sensors maintained by scientists and fishing cooperatives from California, USA, and Baja California, Mexico, we characterize spatial and temporal variability in dissolved oxygen[...]"

 

Source: Nature Scientific Reports
Authors: Natalie H. N. Low et al.
DOI: https://doi.org/10.1038/s41598-021-89928-4

Read the full article here.


Increase of a hypoxia-tolerant fish, Harpadon nehereus (Synodontidae), as a result of ocean deoxygenation off southwestern China

Abstract.

"We report a sudden explosive rise in abundance off southeastern China of a fish species that is hypoxia-tolerant, Bombay duck (Harpadon nehereus, Family Synodontidae), belonging to an Order (the Aulopiformes) encompassing overwhelmingly deep-sea fishes, but which predominantly occurs in coastal water. We suggest that this is made possible by the very high water content of its muscle and other tissues (about 90%, vs 75–80% for other coastal fish), which reduces its oxygen requirements and allows it to outcompete other fish in low-oxygen[...]"

 

Source: Environmental Biology of Fishes
Authors: Bin Kang et al.
DOI: https://doi.org/10.1007/s10641-021-01130-7

Read the full article here.


Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond

Abstract.

"Oceans cover approximately 70% of the Earth’s surface, and microbes comprise 90% of the ocean biomass and are regarded as an important ‘hidden’ driver of essential elemental cycling, such as carbon cycling, in the oceans (Karl, 2007; Salazar and Sunagawa, 2017). Although the general public – even many scientists – think of the oceans as unified, stable water systems, they contain varied environments, including extreme environments such as oxygen-deficient zones, oligotrophic open ocean, polar water regions, deep ocean[...]"

 

Source: Environmental Microbiology Reports
Authors: Xiang Xiao et al.
DOI: 10.1111/1758-2229.12915 

Read the full article here.


Toward a better understanding of fish-based contribution to ocean carbon flux

Abstract.

"Fishes are the dominant vertebrates in the ocean, yet we know little of their contribution to carbon export flux at regional to global scales. We synthesize the existing information on fish-based carbon flux in coastal and pelagic waters, identify gaps and challenges in measuring this flux and approaches to address them, and recommend research priorities. Based on our synthesis of passive (fecal pellet sinking) and active.[...]".

 

Source: ASLO- Association for the Sciences of Limnology and Oceanography
Authors: Grace K. Saba et al.
DOI: https://doi.org/10.1002/lno.11709

Read the full article here.


Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem: A Mesocosm Study

Abstract.

"The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms[...]".

 

Source: Frontiers
Authors: Carsten Spisla et al.
DOI: https://doi.org/10.3389/fmars.2020.611157

Read the full article here.


Floating macrolitter leaked from Europe into the ocean

Abstract.

"Riverine systems act as converging pathways for discarded litter within drainage basins, becoming key elements in gauging the transfer of mismanaged waste into the ocean. However, riverine litter data are scarce and biased towards microplastics, generally lacking information about larger items. Based on the first ever database of riverine floating macrolitter across Europe, we have estimated that between 307 and 925 million litter items are released annually from Europe into the ocean[...]"

 

Source: Nature
Authors: Daniel González-Fernández et al.
DOI: https://doi.org/10.1038/s41893-021-00722-6

Read the full article here.


Showing 21 - 30 of 916 results.
Items per Page 10
of 92