News

Job Offer: PhD candidate in the field biogeochemistry/microbiology

PhD candidate in the field biogeochemistry/microbiology within our upwelling project EVAR. 
The position should focus on governing parameters on nitrous oxide and/or methane cycling in the Benguela upwelling system, linking microbiology and trace gas biogeochemistry. It is really a very interesting and promising PhD-project, with support of two Post-Docs already hired within the project.

The deadline is February 15th.

For further information please read the attached document.


Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone

Abstract.

"Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors—nitrate (NO3−) or oxygen (O2)—makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). [...]"

Source: PNAS
Authors: Nicolaas Glock et al.
DOI: 10.1073/pnas.1813887116

Read the full article here.


Enhanced North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich Stadial 1

Abstract.

"The deglacial history of CO2 release from the deep North Pacific remains unresolved. This is due to conflicting indications about subarctic Pacific ventilation changes based on various marine proxies, especially for Heinrich Stadial 1 (HS-1) when a rapid atmospheric CO2 rise occurs. Here, we use a complex Earth System Model to investigate the deglacial North Pacific overturning and its control on ocean stratification. [...]"

Source: Nature Communications
Authors: X. Gong et al.
DOI: 10.1038/s41467-019-08606-2

Read the full article here.


Job Offer: Postdoctoral Researcher

Postdoctoral Researcher in the area of ocean physical and biogeochemical coupling to work with Professor Resplandy in the Princeton University Geosciences department. The postdoc will investigate the physical and biological processes at both global and local scale that control the evolution of the tropical Oxygen Minimum Zone in the Indian Ocean. Details of the project can be found at https://environment.princeton.edu/grandchallenges/research/energy/dead_zones. Ideally, candidates will have a strong background in numerical modeling, but candidates with the necessary background in geophysical fluid dynamics and/or ocean biogeochemistry will be given full consideration.

Applicants should include a cover letter, a curriculum vitae including a publication list, and contact information for three references by applying at https://www.princeton.edu/acad-positions/position/9941. Applications should be received by April 15, 2019.


Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formati

Abstract.

"The eastern Mediterranean Sea sedimentary record is characterised by intervals of organic rich sediment (sapropels), indicating periods of severe anoxia triggered by astronomical forcing. It has been hypothesized that nitrogen fixation was crucial in injecting the Mediterranean Sea with bioavailable nitrogen (N) during sapropel events. However, the evolution of the N biogeochemical cycle of sapropels is poorly understood. For example, the role of the complementary removal reaction, anaerobic ammonium oxidation (anammox), has not been investigated because the traditional lipid biomarkers for anammox, ladderane fatty acids, are not stable over long periods in the sedimentary record. [...]

Source: Biogeosciences
Authors: Darci Rush et al.
DOI: 10.5194/bg-2019-27

Read the full article here.

 


Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin

Abstract.

"While the value of giant kelp (Macrocystis pyrifera) as a habitat-forming foundation species is well-understood, it is unclear how they impact the oxygen concentration and pH of the surrounding seawater, and further, how such a dynamic abiotic environment will affect eco-evolutionary dynamics in a context of global change. Here, we profiled the nearshore kelp forest environment in Southern California to understand changes in dissolved oxygen (DO) and pH with high spatiotemporal resolution. We then examined transgenerational effects using sea urchins (Strongylocentrotus purpuratus) as our study organism.  [...]"

Source: Frontiers in Marine Science
Authors: Umihiko Hoshijima and Gretchen Hofmann
DOI: 10.3389/fmars.2019.00062

Read the full article here.


Much of the surface ocean will shift in color by end of 21st century

"Climate change is causing significant changes to phytoplankton in the world's oceans, and a new MIT study finds that over the coming decades these changes will affect the ocean's color, intensifying its blue regions and its green ones. Satellites should detect these changes in hue, providing early warning of wide-scale changes to marine ecosystems. [...]"

Source: ScienceDaily

Read the full article here.


Ocean colour signature of climate change

Abstract.

"Marine calcifiers are considered to be among the most vulnerable taxa to climate-forced environmental changes occurring on continental margins with effects hypothesized to occur on microstructural, biomechanical, and geochemical properties of carbonate structures. Natural gradients in temperature, salinity, oxygen, and pH on an upwelling margin combined with the broad depth distribution (100–1,100 m) of the pink fragile sea urchin, Strongylocentrotus (formerly Allocentrotus) fragilis, along the southern California shelf and slope provide an ideal system to evaluate potential effects of multiple climate variables on carbonate structures in situ. [...]"

Source: Nature Communications
Authors: Stephanie Dutkiewicz et al.
DOI: 10.1038/s41467-019-08457-x

Read the full article here.


Response of Sea Urchin Fitness Traits to Environmental Gradients Across the Southern California Oxygen Minimum Zone

Abstract.

"Marine calcifiers are considered to be among the most vulnerable taxa to climate-forced environmental changes occurring on continental margins with effects hypothesized to occur on microstructural, biomechanical, and geochemical properties of carbonate structures. Natural gradients in temperature, salinity, oxygen, and pH on an upwelling margin combined with the broad depth distribution (100–1,100 m) of the pink fragile sea urchin, Strongylocentrotus (formerly Allocentrotus) fragilis, along the southern California shelf and slope provide an ideal system to evaluate potential effects of multiple climate variables on carbonate structures in situ. [...]"

Source: Frontiers in Marine Science
Authors: Kirk N. Sato et al.
DOI: 10.3389/fmars.2018.00258

Read the full article here.


Wind synoptic activity increases oxygen levels in the tropical Pacific Ocean

Abstract.

"The mechanisms controlling the variability of oxygen levels in the ocean are poorly quantified. We focus here on the impact of wind synoptic variability associated with tropical convective regions and extra‐tropical storms. Removing the wind higher frequencies of variability (2 days – 1 month) in an atmosphere reanalysis used to force an ocean model decreases wind stress by up to 20% in the tropics and 50% in the mid‐latitudes, weakening wind‐driven ocean circulation by 20%. Oxygen levels decrease by up to 10 mmol.m‐3 in tropical oceans and 30 mmol.m‐3 in subtropical gyres mainly due to changes in advective processes. [...]"

Source: Geophysical Research Letters
Authors: Olaf Duteil
DOI: 10.1029/2018GL081041

Read the full article here.


Showing 91 - 100 of 525 results.
Items per Page 10
of 53