News

Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone

Abstract.

"Oxygen minimum zones are expanding globally, and at present account for around 20–40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox—anaerobic ammonium oxidation with nitrite—are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. "

Source: Nature Geoscience (2013)
Authors: Tim Kalvelage et al.
DOI: 10.1038/ngeo1739

Read the full article here.


'Dead zone' volume more important than area to fish, fisheries

Dubravko Justic, the Texaco Distinguished Professor in the LSU Department of Oceanography & Coastal Sciences, and Research Associate Lixia Wang recently co-authored a study suggesting that measuring the volume rather than the area of the Gulf of Mexico's dead zone, is more appropriate for monitoring its effects on marine organisms.

 

"The dead zone, a hypoxic zone, is a region of low oxygen that results from runoff of high nutrients, such as nitrogen and phosphorus, often found in fertilizer, flowing from the Mississippi River into the coastal ocean. It is the largest recurring hypoxic zone in the U.S., occurring most summers, and is located off the coast of Louisiana. This nutrient pollution, coupled with other factors, is believed to have a negative impact on fisheries because it depletes the oxygen required to support most marine life in bottom and near-bottom waters. [...]"

Source: Science Daily

Read the full article here.


The Ocean Is Running Out of Breath, Scientists Warn

Widespread and sometimes drastic marine oxygen declines are stressing sensitive species—a trend that will continue with climate change

"Escaping predators, digestion and other animal activities—including those of humans—require oxygen. But that essential ingredient is no longer so easy for marine life to obtain, several new studies reveal.

In the past decade ocean oxygen levels have taken a dive—an alarming trend that is linked to climate change, says Andreas Oschlies, an oceanographer at the Helmholtz Center for Ocean Research Kiel in Germany, whose team tracks ocean oxygen levels worldwide. “We were surprised by the intensity of the changes we saw, how rapidly oxygen is going down in the ocean and how large the effects on marine ecosystems are,” he says. [...]"

Source: Scientific American
Author: Laura Poppick

Read the full article here.


Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific

Abstract.

"Over the past decades, observations have confirmed decreasing oxygen levels and shoaling of oxygen minimum zones (OMZs) in the tropical oceans. Such changes impact the biogeochemical cycling of micronutrients such as Cd, but the potential consequences are only poorly constrained. Here, we present seawater Cd concentrations and isotope compositions for 12 depth profiles at coastal, nearshore and offshore stations from 4°S to 14°S in the eastern tropical South Pacific, where one of the world's strongest OMZs prevails. [...]"

Source: Earth and PLanetary Science Letters
Authors: Ruifang C. Xie et al.
DOI: 10.1016/j.epsl.2019.02.001

Read the full article here.


Hydroxylamine as a Potential Indicator of Nitrification in the Open Ocean

Abstract.

"Hydroxylamine (NH2OH), a short‐lived intermediate in the nitrogen cycle, is a potential precursor of nitrous oxide (N2O) in the ocean. However, measurements of NH2OH in the ocean are sparse. Here we present a data set of depth profiles of NH2OH from the equatorial Atlantic Ocean and the eastern tropical South Pacific and compare it to N2O, nitrate, and nitrite profiles under varying oxygen conditions. The presence of NH2OH in surface waters points toward surface nitrification in the upper 100 m. [...]"

Source: Geophysical Research Letters
Authors: Frederike Korth et al.
DOI: 10.1029/2018GL080466

Read the full article here.


Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific

Abstract.

"We quantified the removal of fixed nitrogen as N2 production by anammox and N2 and N2O production by denitrification over a distance of 1900 km along the coasts of Chile and Peru, using short‐term incubations with 15N‐labeled substrates. The eastern South Pacific contains an oxygen minimum zone (OMZ) characterized by an anoxic, nitrate‐ and nitrite‐rich layer of ∼ 200‐m thickness below 30–90 m of oxic water. [...]"

Source: Limnology and Oceanography
Authors: Tage Dalsgaard et al.
DOI: 10.4319/lo.2012.57.5.1331

Read the full article here.


Autonomous profiling float observations reveal the dynamics of deep biomass distributions in the denitrifying oxygen minimum zone of the Arabian Sea

Abstract.

"Data from 13 autonomous profiling BGC-Argo floats, equipped with biogeochemical and bio-optical sensors deployed between 2011 and 2016, were used to explore the potential of bio-optical methods to map deep biomass distribution in the Arabian Sea oxygen minimum zone (OMZ). Dissolved oxygen sensors revealed concentrations below 5 μmol kg−1 for much of the depth range between 200 and 400 m and below 1 μmol kg−1 in the centre of the OMZ, which is well below climatological values. [...]"

Source: Journal of Marine Systems
Authors: Bożena Wojtasiewicz et al.
DOI: 10.1016/j.jmarsys.2018.07.002

Read the full article here.


Fixed nitrogen loss from the eastern tropical North Pacific and Arabian Sea oxygen deficient zones determined from measurements of N2:Ar

Abstract.

"Previous work estimating the N2excess above background due to denitrification has suggested that nitrate deficit-type methods may be an underestimate of fixed nitrogen (N) loss in the major oxygen deficient zones of the ocean. The N2excess approach has the advantage over nitrate deficit-type methods in that it does not depend on stoichiometric assumptions of fixed N to phosphate or oxygen utilization and avoids any uncertainly regarding the pathway of N loss. [...]"

Source: Global Geochemical Cycles (2012)
Authors: Bonnie X. Chang, Allan H. Devol and Steven R. Emerson
DOI: 10.1029/2011GB004207

Read the full article here.


Slaking the world’s thirst with seawater dumps toxic brine in oceans

"Growing populations and tightening water supplies have spurred people in many places—including the Middle East, Australia, California and China—to look to the oceans and other salty waters as a source of new drinking water. But desalination plants are energy intensive and create a potentially environment-harming waste called brine (made up of concentrated salt and chemical residues), which is dumped into the ocean, injected underground or spread on land.

Despite the ecological threats, “there was no comprehensive assessment about brine—how much we produce,” says Manzoor Qadir, assistant director of the United Nations University Institute on Water, Environment and Health. So he and his colleagues calculated that figure and found it is 50 percent greater than the desalination industry’s previous rough estimate. In fact, it is enough to cover Florida with 30 centimeters of brine every year. [...]"

Source: Scientific American

Read the full article here.


Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone

Abstract.

"We investigated anammox, denitrification and dissimilatory reduction of nitrite to ammonium (DNRA) activity in the Eastern Tropical South Pacific oxygen minimum zone (OMZ) off northern Chile, at high‐depth resolution through the oxycline into the anoxic OMZ core. This was accompanied by high‐resolution nutrient and oxygen profiles to link changes in nitrogen transformation rates to physicochemical characteristics of the water column. Denitrification was detected at most depths, but anammox was the most active N2‐producing process, while DNRA was not detectable. [...]"

Source: Environmental Microbiology
Authors: Loreto De Brabandere et al.
DOI: 10.1111/1462-2920.12255

Read the full article here.


Showing 11 - 20 of 457 results.
Items per Page 10
of 46