The IPCC oceans report is a wake-up call for policymakers

"The importance of the ocean in climate regulation is enormous—yet undervalued. The ocean is estimated to have absorbed 93 percent of the excess heat generated by human activities since the 1970s, acting as a buffer against the global warming we've seen to date. The majority of the global carbon cycle circulates through the ocean, through marine food-webs and other processes, and carbon is locked-away in coastal and marine habitats and deep in ocean sediments. Coastal ecosystems alone sequester more carbon than terrestrial forest per unit area. [...]"


Read the full article here.

The Sensitivity of Future Ocean Oxygen to Changes in Ocean Circulation


"A decline in global ocean oxygen concentrations has been observed over the twentieth century and is predicted to continue under future climate change. We use a unique modeling framework to understand how the perturbed ocean circulation may influence the rate of ocean deoxygenation in response to a doubling of atmospheric CO2 and associated global warming. [...]"

Source: Global Biogeochemical Cycles
Authors: Jaime B. Palter and David S. Trossman
DOI: 10.1002/2017GB005777

Read the full article here.

The Oceans Are Warming Even Faster Than We Previously Thought

"The oceans have long been considered our planet's heat sponge - a 2014 report from the Intergovernmental Panel on Climate Change (IPCC) stated that the oceans had absorbed 93% of the excess heat that greenhouse gases have trapped within the Earth's atmosphere. However, a recent study shows that the world's oceans have absorbed 60% more heat over the past 25 years than initially thought. [...]"

Source: Forbes
Author: Priya Shukla

Read the full article here.

Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition


"The ocean is the main source of thermal inertia in the climate system. During recent decades, ocean heat uptake has been quantified by using hydrographic temperature measurements and data from the Argo float program, which expanded its coverage after 2007. However, these estimates all use the same imperfect ocean dataset and share additional uncertainties resulting from sparse coverage, especially before 2007.  [...]"

Source: Nature
Authors: L. Resplandy et al.
DOI: 10.1038/s41586-018-0651-8

Read the full article here.

Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event


"Chemical weathering consumes atmospheric carbon dioxide through the breakdown of silicate minerals and is thought to stabilize Earth’s long-term climate. However, the potential influence of silicate weathering on atmospheric pCO2 levels on geologically short timescales (103–105 years) remains poorly constrained. Here we focus on the record of a transient interval of severe climatic warming across the Toarcian Oceanic Anoxic Event or T-OAE from an open ocean sedimentary succession from western North America. [...]"

Source: Scientific Reports
Authors: Theodore R. Them et al.
DOI: 10.1038/s41598-017-05307-y

Full article