News

Potential effects of deep seabed mining on pelagic and benthopelagic biota

Abstract.

"Environmental concerns were raised from the very onset of discussions concerning the extraction of metalliferous ores from the deep sea, but most studies have targeted the expected impacts on the benthic communities only. The first section of this study compiles possible impacts of deep seabed mining activities on pelagic organisms. Several processes of mining-related activities were identified that can potentially affect the pelagic environment. Some of these processes will assumedly have only minor effects on the pelagic and benthopelagic communities, for example substrate removal and deposition of material.[...]"

 

Source: Science Direct
Authors: Bernd Christiansen et al.
DOI: https://doi.org/10.1016/j.marpol.2019.02.014

Read the full article here.

 


Benthic fluxes of oxygen and nutrients under the influence of macrobenthic fauna on the periphery of the intermittently hypoxic zone in the Baltic Sea

Abstract.

"Understanding the role of benthic organisms in marine sediments is becoming increasingly important with the growing problem of eutrophication of marine ecosystems around the world, including the Baltic Sea. Therefore, we have conducted a series of incubation experiments on sediment cores collected from sites characterized by varying oxygen conditions and measured the influx (uptake by sediment) of oxygen as well as the sediment–water exchange of phosphate, ammonia and silicate.[...]"

 

Source: Science Direct
Authors: Halina Kendzierska et al.
Doi: https://doi.org/10.1016/j.jembe.2020.151439

Read the full article here.


Macrobenthic communities in a shallow normoxia to hypoxia gradient in the Humboldt upwelling ecosystem

Abstract.

"Hypoxia is one of the most important stressors affecting the health conditions of coastal ecosystems. In highly productive ecosystems such as the Humboldt Current ecosystem, the oxygen minimum zone is an important abiotic factor modulating the structure of benthic communities over the continental shelf. Herein, we study soft-bottom macrobenthic communities along a depth gradient–at 10, 20, 30 and 50 m–for two years to understand how hypoxia affects the structure of shallow communities at two sites in Mejillones Bay (23°S) in northern Chile. [...]"

Source: PLoS ONE
Authors: Maritza Fajardo et al.
DOI: 10.1371/journal.pone.0200349

Read the full article here.