News

Oxygen minimum zone-type biogeochemical cycling in the Cenomanian-Turonian Proto-North Atlantic across Oceanic Anoxic Event 2

Abstract.

"Oceanic Anoxic Events (OAEs) in Earth's history are regarded as analogues for current and future ocean deoxygenation, potentially providing information on its pacing and internal dynamics. In order to predict the Earth system's response to changes in greenhouse gas concentrations and radiative forcing, a sound understanding of how biogeochemical cycling differs in modern and ancient marine environments is required. [...]"

Source: Earth and Planetary Science Letters
Authors: Florian Scholz et al.
DOI: 10.1016/j.epsl.2019.04.008

Read the full article here.


Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific

Abstract.

"Over the past decades, observations have confirmed decreasing oxygen levels and shoaling of oxygen minimum zones (OMZs) in the tropical oceans. Such changes impact the biogeochemical cycling of micronutrients such as Cd, but the potential consequences are only poorly constrained. Here, we present seawater Cd concentrations and isotope compositions for 12 depth profiles at coastal, nearshore and offshore stations from 4°S to 14°S in the eastern tropical South Pacific, where one of the world's strongest OMZs prevails. [...]"

Source: Earth and PLanetary Science Letters
Authors: Ruifang C. Xie et al.
DOI: 10.1016/j.epsl.2019.02.001

Read the full article here.


The emergence of a globally productive biosphere

Abstract.

"A productive biosphere and oxygenated atmosphere are defining features of Earth and are fundamentally linked. Here I argue that cellular metabolism imposes central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis. [...]"

Source: PeerJ Preprints
Author: Rogier Braakman
DOI: 10.7287/peerj.preprints.27269v1

Read the full article here.


Ecology and evolution of seafloor and subseafloor microbial communities

Abstract.

"Vast regions of the dark ocean have ultra-slow rates of organic matter sedimentation, and their sediments are oxygenated to great depths yet have low levels of organic matter and cells. Primary production in the oxic seabed is supported by ammonia-oxidizing archaea, whereas in anoxic sediments, novel, uncultivated groups have the potential to produce H2 and CH4, which fuel anaerobic carbon fixation. [...]"

Source: Nature Reviews Microbiology
Authors: William D. Orsi
DOI: 10.1038/s41579-018-0046-8

Read the full article here.


Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

Abstract.

"The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. [...]"

Source: Nature Communications
Authors: Sebastiaan van de Velde et al.
DOI: 10.1038/s41467-018-04973-4

Read the full article here.


Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center

Abstract.

"Biogeochemistry of oxygen minimum zone (OMZ) sediments, which are characterized by high input of labile organic matter, have crucial bearings on the benthic biota, gas and metal fluxes across the sediment-water interface, and carbon-sulfur cycling. Here we couple pore-fluid chemistry and comprehensive microbial diversity data to reveal the sedimentary carbon-sulfur cycle across a water-depth transect covering the entire thickness of eastern Arabian Sea OMZ, off the west coast of India. [...]"

Source: Scientific Reports
Authors: Svetlana Fernandes et al.
DOI: 10.1038/s41598-018-27002-2

Read the full article here.


Biogeochemical role of subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms, and microbial stewpots?

Abstract.

"Subsurface coherent eddies are well-known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here, we use a global eddying (0.1° ) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS), and quantify their biogeochemical effects as they propagate westward into the subtropical gyres.  [...]"

Source: Global Biogeochemical Cycles
Authors: Ivy Frenge et al.
DOI: 10.1002/2017GB005743


Marine N2O emissions from nitrification [...] constrained by modern observations and projected in multi-millennial global warming simula

Abstract.

"Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent, yet, global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent byproduct from nitrification in the Bern3D ocean model. [...]"

Source: Global Biogeochemical Cycles
Authors: G. Battaglia, F. Joos
DOI: 10.1002/2017GB005671

Read the full article here.


Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients

Abstract.

"Microbial communities drive biogeochemical cycles through networks of metabolite exchange that are structured along energetic gradients. As energy yields become limiting, these networks favor co-metabolic interactions to maximize energy disequilibria. Here we apply single-cell genomics, metagenomics, and metatranscriptomics to study bacterial populations of the abundant “microbial dark matter” phylum Marinimicrobia along defined energy gradients. [...]"

Source: Nature Communications
Authors: Alyse K. Hawley et al.
DOI: 10.1038/s41467-017-01376-9

Read the full article here.


A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer

Abstract.

"The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized metagenomic libraries of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement to query microbial diversity. [...]"

Source: The ISME Journal
Authors: Benjamin J. Tully et al.
DOI: 10.1038/ismej.2017.187

Read the full article here.


Showing 1 - 10 of 16 results.
Items per Page 10
of 2