News

The Sensitivity of Future Ocean Oxygen to Changes in Ocean Circulation

Abstract.

"A decline in global ocean oxygen concentrations has been observed over the twentieth century and is predicted to continue under future climate change. We use a unique modeling framework to understand how the perturbed ocean circulation may influence the rate of ocean deoxygenation in response to a doubling of atmospheric CO2 and associated global warming. [...]"

Source: Global Biogeochemical Cycles
Authors: Jaime B. Palter and David S. Trossman
DOI: 10.1002/2017GB005777

Read the full article here.


Powering Ocean Giants: The Energetics of Shark and Ray Megafauna

Abstract.

"Energetics studies have illuminated how animals partition energy among essential life processes and survive in extreme environments or with unusual lifestyles. There are few bioenergetics measurements for elasmobranch megafauna; the heaviest elasmobranch for which metabolic rate has been measured is only 47.7 kg, despite many weighing >1000 kg. Bioenergetics models of elasmobranch megafauna would answer fundamental ecological questions surrounding this important and vulnerable group, and enable an understanding of how they may respond to changing environmental conditions, such as ocean warming and deoxygenation. [...]"

Source: Trends in Ecology & Evolution
Authors: Christopher L. Lawson et al.
DOI: 10.1016/j.tree.2019.07.001

Read the full article here.


Gulf Dead Zone Looms Large in 2019

"In 2019, predictions indicate that the Gulf of Mexico will retain the dubious distinction of having the second-largest low-oxygen dead zone on Earth (the Baltic Sea remains firmly in first place). By the end of the summer, the hypoxic region on the seafloor at the mouth of the Mississippi River is expected to occupy over 22,000 square kilometers—an area the size of the state of Massachusetts. [...]

Source: Earth & Space Science News
Author: Mary Caperton Morton
DOI: 10.1029/2019EO128019

Read the full article here.


The far-future ocean: Warm yet oxygen-rich

"The oceans are losing oxygen. Numerous studies based on direct measurements in recent years have shown this. Since water can dissolve less gas as temperatures rise, these results were not surprising. In addition to global warming, factors such as eutrophication of the coastal seas also contribute to the ongoing deoxygenation. [...]"

Source: Phys.org

Read the full article here.


Loss of fixed nitrogen causes net oxygen gain in a warmer future ocean

Abstract.

"Oceanic anoxic events have been associated with warm climates in Earth history, and there are concerns that current ocean deoxygenation may eventually lead to anoxia. Here we show results of a multi-millennial global-warming simulation that reveal, after a transitory deoxygenation, a marine oxygen inventory 6% higher than preindustrial despite an average 3 °C ocean warming. [...]"

Source: Nature Communications
Authors: Andreas Oschlies et al.
DOI: 10.1038/s41467-019-10813-w

Read the full article here.


Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size

Abstract.

"It has been suggested that giant Antarctic marine invertebrates will be particularly vulnerable to declining O2 levels as our ocean warms in line with current climate change predictions. Our study provides some support for this oxygen limitation hypothesis, with larger body sizes being generally more sensitive to O2 reductions than smaller body sizes. [...]"

Source: Philosophical Transactions of the Royal Society B
Authors: John I. Spicer  and Simon A. Morley
DOI: 10.1098/rstb.2019.0034

Read the full article here.


The complex fate of Antarctic species in the face of a changing climate

"Researchers have presented support for the theory that marine invertebrates with larger body size are generally more sensitive to reductions in oxygen than smaller animals, and so will be more sensitive to future global climate change. However, evolutionary innovation can to some extent offset any respiratory disadvantages of large body size. [...]"

Source: Science Daily / University of Plymouth

Read the full article here.


Variations in ocean deoxygenation across Earth System Models: Isolating the role of parametrized lateral mixing

Abstract.

"Modern Earth System Models (ESMs) disagree on the impacts of anthropogenic global warming on the distribution of oxygen and associated low‐oxygen waters. A sensitivity study using the GFDL CM2Mc model points to the representation of lateral mesoscale eddy transport as a potentially important factor in such disagreement. Because mesoscale eddies are smaller than the spatial scale of ESM ocean grids, their impact must be parameterized using a lateral mixing coefficient AREDI. [...]"

Source: Global Biogeochemical Cycles
Authors: A. Bahl, A. Gnanadesikan and M.‐A. Pradal
DOI: 10.1029/2018GB006121

Read the full article here.


Vision is highly sensitive to oxygen availability in marine invertebrate larvae

Abstract.

"For many animals, evolution has selected for complex visual systems despite the high energetic demands associated with maintaining eyes and their processing structures. The metabolic demands of visual systems therefore make them highly sensitive to fluctuations in available oxygen. In the marine environment, oxygen changes over daily, seasonal, and inter-annual time scales and there are large gradients of oxygen with depth. [...]"

Source: Journal of Experimental Biology
Auhtors: Lillian R. McCormick, Lisa A. Levin and Nicholas W. Oesch
DOI: 10.1242/jeb.200899

Read the full article here.


Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE

Abstract.

"Marine deoxygenation and anthropogenic ocean warming are observed and projected to intensify in the future. These changes potentially impact the functions and services of marine ecosystems. A key question is whether marine ecosystems are already or will soon be exposed to environmental conditions not experienced during the last millennium. Using a forced simulation with the Community Earth System Model (CESM) over the period 850 to 2100, we find that anthropogenic deoxygenation and warming in the thermocline exceeded natural variability in, respectively, 60 % and 90 % of total ocean area. [...]"

Source: Biogeosciences
Authors: Angélique Hameau, Juliette Mignot Fortunat Joos
DOI: 10.5194/bg-16-1755-2019

Read the full article here.


Showing 1 - 10 of 89 results.
Items per Page 10
of 9