News

Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?

Abstract.

"Oceanic primary production forms the basis of the marine food web and provides a pathway for carbon sequestration. Despite its importance, spatial and temporal variations of primary production are poorly observed, in large part because the traditional measurement techniques are laborious and require the presence of a ship. More efficient methods are emerging that take advantage of miniaturized sensors integrated into autonomous platforms such as gliders and profiling floats. One such method relies on determining the diurnal cycle of dissolved oxygen in the mixed layer and has been applied successfully to measurements from gliders and mixed-layer floats. [...]”

 

Source: Biogeosciences
Authors: Christopher Gordon et al.
DOI: 10.5194/bg-17-41110.5194

 

Read the full article here.

 


NOAA, partners to report on 2020 Gulf of Mexico ‘dead zone’ monitoring cruise

NOAA and its partners will report on their recent research cruise to measure the extent of the hypoxic or “dead zone” in the Gulf of Mexico during a media teleconference on Tue., Aug. 4 at 11:00 a.m. EDT.

In June, NOAA scientists forecasted this summer’s dead zone – an area of low to no oxygen that can kill fish and other marine life – to be approximately 6,700 square miles. That is larger than the long-term average measured size of 5,387 square miles, but substantially less than the record of 8,776 square miles set in 2017.

 

Visit the announcement here.


Larger-than-average ‘dead zone’ expected for Gulf of Mexico

"NOAA scientists are forecasting this summer’s Gulf of Mexico hypoxic area or “dead zone” – an area of low to no oxygen that can kill fish and other marine life – to be approximately 6,700 square miles, larger than the long-term average measured size of 5,387 square miles but substantially less than the record of 8,776 square miles set in 2017. The annual prediction is based on U.S. Geological Survey river-flow and nutrient data. [...]"

Source: NOAA

Read the full article here.


Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico

Abstract.

"The hypoxic zone in the northern Gulf of Mexico varies spatially (area, location) and temporally (onset, duration) on multiple scales. Exposure to hypoxic dissolved oxygen (DO) concentrations (< 2 mg L−1) is often lethal and exposure to 2 to 4 mg L−1 often causes the sublethal effects of decreased growth and fecundity on individuals of many fish species. We simulated the movement of individual fish within a high-resolution 3-D coupled hydrodynamic-water quality model (FVCOM-WASP) configured for the northern Gulf of Mexico to examine how spatial variability in DO concentrations would affect fish exposure to hypoxic and sublethal DO concentrations. [...]"

Source: Biogeosciences
Authors: Elizabeth D. LaBone et al.
DOI: 10.5194/bg-2020-51

Read the full article here.


Implications of different nitrogen input sources for potential production and carbon flux estimates in the coastal Gulf of Mexico (GOM)

and Korean Peninsula coastal waters

Abstract.

"The coastal Gulf of Mexico (GOM) and coastal sea off the Korean Peninsula (CSK) both suffer from human-induced eutrophication. We used a nitrogen (N) mass balance model in two different regions with different nitrogen input sources to estimate organic carbon fluxes and predict future carbon fluxes under different model scenarios. The coastal GOM receives nitrogen predominantly from the Mississippi and Atchafalaya rivers and atmospheric nitrogen deposition is only a minor component in this region. [...]"

Source: Ocean Science
Authors: Jongsun Kim et al.
DOI: 10.5194/os-16-45-2020

Read the full article here.


Fish Diet Shifts Associated with the Northern Gulf of Mexico Hypoxic Zone

Abstract.

"The occurrence of low dissolved oxygen (hypoxia) in coastal waters may alter trophic interactions within the water column. This study identified a threshold at which hypoxia in the northern Gulf of Mexico (NGOMEX) alters composition of fish catch and diet composition (stomach contents) of fishes using fish trawl data from summers 2006–2008. Hypoxia in the NGOMEX impacted fish catch per unit effort (CPUE) and diet below dissolved oxygen thresholds of 1.15 mg L−1 (for fish CPUE) and 1.71 mg L−1 (for diet). CPUE of many fish species was lower at hypoxic sites (≤ 1.15 mg L −1) as compared to normoxic regions (> 1.15 mg L −1), including the key recreational or commercial fish species Atlantic croaker Micropogonias undulatus and red snapper Lutjanus campechanus. [...]"

Source: Estuaries and Coasts
Authors: Cassandra N. Glaspie et al.
DOI: 10.1007/s12237-019-00626-x

Read the full article here.


Larval Fish Habitats and Deoxygenation in the Northern Limit of the Oxygen Minimum Zone off Mexico

Abstract.

"The present state of deoxygenation in the northern limits of the shallow oxygen minimum zone off Mexico is examined in order to detect its effects on larval fish habitats and consider the sensitivity of fish larvae to decreased dissolved oxygen. A series of cruises between 2000 and 2017 indicated a significant vertical expansion of low oxygen waters. The upper limit of suboxic conditions (<4.4 μmol/kg) has risen ~100 m at 19.5°N off Cabo Corrientes and ~50 m at 25°N in the mouth of the Gulf of California. The larval habitat distribution was related to the geographic variability of dissolved oxygen and water masses between these two latitudes. [...]"

Source: JGR Oceans
Authors: Laura Sánchez‐Velasco et al.
DOI: 10.1029/2019JC015414

Read the full article here.


Coral Mortality Event in the Flower Garden Banks of the Gulf of Mexico in July 2016: Local Hypoxia due to Cross-Shelf Transport of Coastal Flood Water

Abstract.

"Remotely sensed and in situ data, in tandem with numerical modeling, are used to explore the causes of an episode of localized but severe mortality of corals, sponges, and other invertebrates at the Flower Garden Banks (FGB) National Marine Sanctuary in July 2016. [...]"

Source: Continental Shelf Research
Authors: Matthieu Le Hénaff et al.
DOI: 10.1016/j.csr.2019.103988

Read the full article here.


A New Characterization of the Upper Waters of the central Gulf of México based on Water Mass Hydrographic and Biogeochemical Characteristics

Abstract.

" In the Gulf of Mexico (GoM) at least three near-surface water masses are affected by mesoscale processes that modulate the biogeochemical cycles. Prior studies have presented different classifications of water masses where the greater emphasis was on deep waters and not on the surface waters (σθ < 26 kg m−3), as in this work. Here presents a new classification of water masses in the GoM, based on thermohaline properties and dissolved oxygen (DO) concentration using data from a total of five summer and winter cruises carried out primarily in the central GoM. [...]"

Source: Biogeosciences
Authors: Gabriela Yareli Cervantes-Diaz et al.
DOI: 10.5194/bg-2019-340

Read the full article here.


Quantifying the Relative Importance of Riverine and Open‐Ocean Nitrogen Sources for Hypoxia Formation in the Northern Gulf of Mexico

Abstract.

"The Mississippi and Atchafalaya River System discharges large amounts of freshwater and nutrients into the northern Gulf of Mexico (NGoM). These lead to increased stratification and elevate primary production in the outflow region. Consequently, hypoxia (oxygen <62.5 mmol/m3), extending over an area of roughly 15,000 km2, forms every summer in bottom waters. [...]"

Source: JGR Oceans
Authors: Fabian Große et al.
DOI: 10.1029/2019JC015230

Read the full article here.


Showing 1 - 10 of 36 results.
Items per Page 10
of 4