News

Distribution of iron in the Western Indian Ocean and the Eastern tropical South pacific: An inter-basin comparison

Abstract.

"The Western Indian Ocean (WIO) and Eastern Tropical South Pacific (ETSP) are distinctly different regimes, yet they share several important features. These include a strong upwelling system, a large oxygen minimum zone (OMZ) with active denitrification, a spreading center with extensive hydrothermal activity, and a vast oligotrophic upper water column. Here, we show that the distribution and geochemistry of iron shows remarkable similarities as well. [...]"

Source: Chemical Geology
Authors: James W. Moffett and Christopher R. German
DOI: 10.1016/j.chemgeo.2019.119334

Read the full article here.


Diversity of culturable Sulphur-oxidising bacteria in the oxygen minimum zones of the northern Indian Ocean

Abstract.

"Oxygen minimum zones (OMZs) are unique, widely spread and well-studied features of the global ocean, varying in seasonality and intensity. The Northern Indian Ocean contains OMZs in the Arabian Sea (AS-OMZ) and the Bay of Bengal (BB-OMZ) having unique biogeochemical features. OMZ water column harbours distinct microbial communities that play vital roles in ocean biogeochemical cycles. Sulphur cycling processes facilitated by OMZ microbial communities are poorly understood with regards to different microbial groups involved, spatially and temporally. [...]"

Source: Journal of Marine Systems (2018)
Authors: Larissa Menezes et al.
DOI: 10.1016/j.jmarsys.2018.05.007

Read the full article here.


Finding forced trends in oceanic oxygen

Abstract.

"Anthropogenically forced trends in oceanic dissolved oxygen are evaluated in Earth system models in the context of natural variability. A large ensemble of a single Earth system model is used to clearly identify the forced component of change in interior oxygen distributions and to evaluate the magnitude of this signal relative to noise generated by internal climate variability. The time of emergence of forced trends is quantified on the basis of anomalies in oxygen concentrations and trends. [...]"

Source: Global Biogeochemical Cycles
Authors: Matthew C. Long, Curtis Deutsch and Taka Ito
DOI: 10.1002/2015GB005310 

Read the full article here.