News

Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin

Abstract.

"While the value of giant kelp (Macrocystis pyrifera) as a habitat-forming foundation species is well-understood, it is unclear how they impact the oxygen concentration and pH of the surrounding seawater, and further, how such a dynamic abiotic environment will affect eco-evolutionary dynamics in a context of global change. Here, we profiled the nearshore kelp forest environment in Southern California to understand changes in dissolved oxygen (DO) and pH with high spatiotemporal resolution. We then examined transgenerational effects using sea urchins (Strongylocentrotus purpuratus) as our study organism.  [...]"

Source: Frontiers in Marine Science
Authors: Umihiko Hoshijima and Gretchen Hofmann1
DOI: 10.3389/fmars.2019.00062

Read the full article here.


Project: Kelp Forest Array

The Kelp Forest Array (KFA) is a state-of-the-art cabled platform for observational and experimental science aimed at monitoring and understanding local impacts of global climate change. Increasing climate change and ocean acidification pressures require the establishment of long-term, baseline monitoring methods to document how a currently healthy system changes and to understand effects of climate change in relation to this natural variability. Current monitoring practices limit resolution and longevity of baseline data sets.

 

Full article