News

Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry

Abstract.

"Oceanic sulfate concentrations are widely thought to have reached millimolar levels during the Proterozoic Eon, 2.5 to 0.54 billion years ago. Yet the magnitude of the increase in seawater sulfate concentrations over the course of the Eon remains largely unquantified. A rise in seawater sulfate concentrations has been inferred from the increased range of marine sulfide δ34S values following the Great Oxidation Event and was induced by two processes: enhanced oxidative weathering of sulfides on land, and the onset of marine sulfur redox cycling. [...]"

Source: Nature Geoscience
Authors: Mojtaba Fakhraee et al.
DOI: 10.1038/s41561-019-0351-5

Read the full article here.

 


Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane

Abstract.

"Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea−air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (−33,300 ± 7,900 μmol m−2⋅d−1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea−air methane efflux (17.3 ± 4.8 μmol m−2⋅d−1).  [...]"

Source: Proceedings of the Nathional Academy of Sciences of the United States of America (PNAS)
Authors: John W. Pohlman et al.
DOI: 10.1073/pnas.1618926114

Full article