News

Microbial metabolite fluxes in a model marine anoxic ecosystem

Abstract.

"Permanently anoxic regions in the ocean are widespread and exhibit unique microbial metabolic activity exerting substantial influence on global elemental cycles and climate. Reconstructing microbial metabolic activity rates in these regions has been challenging, due to the technical difficulty of direct rate measurements. In Cariaco Basin, which is the largest permanently anoxic marine basin and an important model system for geobiology, long‐term monitoring has yielded time series for the concentrations of biologically important compounds; however, the underlying metabolite fluxes remain poorly quantified. [...]"

Source: Geobiology
Authors: Stilianos Louca et al.
DOI: 10.1111/gbi.12357

Read the full article here.


The Equatorial Undercurrent and the Oxygen Minimum Zone in the Pacific

Abstract.

"Warming‐driven expansion of the oxygen minimum zone (OMZ) in the equatorial Pacific would bring very low oxygen waters closer to the ocean surface, and possibly impact global carbon/nutrient cycles and local ecosystems. Global coarse Earth System Models (ESMs) show, however, disparate trends that poorly constrain these future changes in the upper OMZ. [...]"

Source: Geophysical Research Letters
Authors: Julius J.M. Busecke, Laure Resplandy and John P. Dunne
DOI: 10.1029/2019GL082692

Read the full article here.


Assessment of the impact of spatial resolution on ROMS simulated upper-ocean biogeochemistry of the Arabian Sea from an operational perspective

Abstract.

"The resolution of the model emerges to be an important factor in simulating the real oceanic features. In this paper, the performance of two coupled bio-physical models, having spatial resolutions 1/12° (∼9 km) and 1/4° (∼25 km) configured using Regional Ocean Modeling System (ROMS), have been evaluated in simulating upper ocean dynamics of the Arabian Sea. [...]"

Source: Journal of Operational Oceanography
Authors: Kunal Chakraborty et al.
DOI: 10.1080/1755876X.2019.1588697

Read the full article here.


The impact of primary and export production on the formation of the secondary nitrite maximum: A model study

Abstract.

"The so-called secondary nitrite maximum (SNM) is a pronounced subsurface feature in many oxygen deficient zones of the ocean. A nitrite layer of up to several hundred meters thickness indicates high microbial activity and nitrogen loss from the system. To study the effects of primary and export production on the SNM, we have developed a one-dimensional ecosystem model for oxygen deficient zones. Our model couples the marine nitrogen and oxygen cycles with physical water column processes, includes euphotic, aphotic, aerobic and anaerobic processes and thereby dynamically describes source and sink processes for nitrite. [...]"

Source: Ecological Modelling
Authors: Aike Beckmann and Inga Hense
DOI: 10.1016/j.ecolmodel.2017.05.014

Read the full article here.


Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings

Abstract.

"We explore centennial changes in tropical Pacific oxygen (O2) using numerical models to illustrate the dominant patterns and mechanisms under centennial climate change. Future projections from state‐of‐the‐art Earth System Models exhibit significant model to model differences, but decreased solubility and weakened ventilation together deplete thermocline O2 in middle to high latitudes. In contrast, the tropical thermocline O2undergoes much smaller changes or even a slight increase. [...]"

Source: Global Biogeochemical Cycles
Authors: Yohei Takano, Takamitsu Ito & Curtis Deutsch
DOI: 10.1029/2018GB005939

Read the full article here.