News

Deep-Water Dynamics in the Subpolar North Atlantic at the End of the Quaternary

Abstract.

"In the subpolar North Atlantic, four sediment cores were taken. All of them were suitable for reconstructing the dynamics of the meridional overturning circulation in the late Quaternary. Stratigraphy of the cores was performed by carbonate analyses, study of planktonic foraminifera, and oxygen isotopic composition in Neogloboquadrina pachyderma sin. Study of benthonic foraminifera assemblages has shown significant differences in the deep-water dynamics in the late Quaternary related to water exchange between the North Atlantic and Arctic seas. [...]"

Source: Oceanology
Authors: N.P. Lukashina
DOI: 10.1134/S0001

Read the full article here.


Shift in large-scale Atlantic circulation causes lower-oxygen water to invade Canada’s Gulf of St. Lawrence

"The Gulf of St. Lawrence has warmed and lost oxygen faster than almost anywhere else in the global oceans. The broad, biologically rich waterway in Eastern Canada drains North America’s Great Lakes and is popular with fishing boats, whales and tourists.

A new study led by the University of Washington looks at the causes of this rapid deoxygenation and links it to two of the ocean’s most powerful currents: the Gulf Stream and the Labrador Current. The study, published Sept. 17 in Nature Climate Change, explains how large-scale climate change already is causing oxygen levels to drop in the deeper parts of this waterway."

Source: University of Washington
Author: Hannah Hickey

Read the full article here.


Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic

Abstract.

"Global observations show that the ocean lost approximately 2% of its oxygen inventory over the past five decades, with important implications for marine ecosystems. The rate of change varies regionally, with northwest Atlantic coastal waters showing a long-term drop that vastly outpaces the global and North Atlantic basin mean deoxygenation rates. However, past work has been unable to differentiate the role of large-scale climate forcing from that of local processes. [...]"

Source: Nature Climate Change
Auhors: Mariona Claret et al.
DOI: 10.1038/s41558-018-0263-1

Read the full article here.


Coccolithovirus facilitation of carbon export in the North Atlantic

Abstract.

"Marine phytoplankton account for approximately half of global primary productivity, making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon, which can stimulate nutrient regeneration, primary production and upper ocean respiration2 via lytic infection and the ‘virus shunt’. [...]"

Source: Nature Microbiology
Authors: Christien P. Laber
DOI: 10.1038/s41564-018-0128-4

Read the full article here.


Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean

Abstract.

"Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification1, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the ‘aragonite saturation horizon’—below which waters are undersaturated with respect to a particular calcium carbonate, aragonite—to move to shallower depths (to shoal), exposing corals to corrosive waters. [...]"

Source: Nature
Authors: Fiz F. Perez et al.
DOI: 10.1038/nature25493

Read the full article here.