News

High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site

Abstract.

"Methane (CH4) in marine sediments has the potential to contribute to changes in the ocean and climate system. Physical and biochemical processes that are difficult to quantify with current standard methods such as acoustic surveys and discrete sampling govern the distribution of dissolved CH4 in oceans and lakes. [...]"

Source: Ocean Science
Authors: Pär Jansson et al. 
DOI: 10.5194/os-15-1055-2019

Read the full article here.


Climate change could shrink oyster habitat in California

"Ocean acidification is bad news for shellfish, as it makes it harder for them to form their calcium-based shells. But climate change could also have multiple other impacts that make California bays less hospitable to shelled organisms like oysters, which are a key part of the food web.

Changes to water temperature and chemistry resulting from human-caused climate change could shrink the prime habitat and farming locations for oysters in California bays, according to a new study from the University of California, Davis. [...]"

Source: Science Daily

Read the full article here.


Building the Knowledge-to-Action Pipeline in North America: Connecting Ocean Acidification Research and Actionable Decision Support

Abstract.

"Ocean acidification (OA) describes the progressive decrease in the pH of seawater and other cascading chemical changes resulting from oceanic uptake of atmospheric carbon. These changes can have important implications for marine ecosystems, creating risk for commercial industries, subsistence communities, cultural practices, and recreation. [...]"

Source: Frontiers in Marine Science
Authors: Jessica N. Cross et al.
DOI: 10.3389/fmars.2019.00356

Read the full article here. 


Effects of ocean acidification on the respiration and feeding of juvenile red and blue king crabs (Paralithodes camtschaticus and P. platypus)

Abstract.

"Ocean acidification is a decrease in pH resulting from dissolution of anthropogenic CO2 in the oceans that has physiological effects on many marine organisms. Juvenile red and blue king crabs (Paralithodes camtschaticus and P. platypus) exhibit both increased mortality and decreased growth in acidified waters. In this study, we determined how ocean acidification affects oxygen consumption, feeding rates, and growth in both species. [...]"

Source: ICES Journal of Marine Science
Authors: William Christopher Long et al.
DOI: 10.1093/icesjms/fsz090

Read the full article here.


Carbon cycling in the North American coastal ocean: a synthesis

Abstract.

"A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes for the North American coastal ocean. [...]"

Source: Biogeosciences
Authors: Katja Fennel et al.
DOI: 10.5194/bg-16-1281-2019

Read the full article here.


Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis

Abstract.

"The Dungeness crab is an economically and ecologically important species distributed along the North American Pacific coast. To predict how Dungeness crab may physiologically respond to future global ocean change on a molecular level, we performed untargeted metabolomic approaches on individual Dungeness crab juveniles reared in treatments that mimicked current and projected future pH and dissolved oxygen conditions. We found 94 metabolites and 127 lipids responded in a condition-specific manner, with a greater number of known compounds more strongly responding to low oxygen than low pH exposure. [...]"

Source: bioRxiv
Authors: Shelly A. Trigg et al.
DOI: 10.1101/574798

Read the full article here.


Interpreting Mosaics of Ocean Biogeochemistry

"Sea level rise, heat transport, ocean acidification, these ocean processes, well known in the public sphere, play out on a regional to global scale. But less well known are more localized processes that bring some ecological niches together, keep others separated, and help sustain ocean life by circulating nutrients.

Physical processes in the ocean that take place over intermediate and small scales of space and time play a key role in vertical seawater exchange. They also have significant effects on chemical, biological, and ecological processes in the upper ocean. [...]"

Source: EOS

Read the full article here.


Reconstructing Aragonite Saturation State Based on an Empirical Relationship for Northern California

Abstract.

"Ocean acidification is a global phenomenon with highly regional spatial and temporal patterns. In order to address the challenges of future ocean acidification at a regional scale, it is necessary to increase the resolution of spatial and temporal monitoring of the inorganic carbon system beyond what is currently available. One approach is to develop empirical regional models that enable aragonite saturation state to be estimated from existing hydrographic measurements, for which greater spatial coverage and longer time series exist in addition to higher spatial and temporal resolution. [...]"

Source: Estuaries and Coasts
Authors: Catherine V. Davis et al.
DOI: 10.1007/s12237-018-0372-0

Read the full article here.


Oysters as sentinels of climate variability and climate change in coastal ecosystems

Abstract.

"Beyond key ecological services, marine resources are crucial for human food security and socio-economical sustainability. Among them, shellfish aquaculture and fishing are of primary importance but become more vulnerable under anthropogenic pressure, as evidenced by reported mass mortality events linked to global changes such as ocean warming and acidification, chemical contamination, and diseases. Understanding climate-related risks is a vital objective for conservation strategies, ecosystems management and human health.  [...]"

Source: Environmental Research Letters
Authors: Yoann Thomas et al.
DOI: 10.1088/1748-9326/aae254

Read the full article here.


The impact of ocean acidification on the byssal threads of the blue mussel (Mytilus edulis)

Abstract.

"Blue mussel (Mytilus edulis) produce byssal threads to anchor themselves to the substrate. These threads are always exposed to the surrounding environmental conditions. Understanding how environmental pH affects these threads is crucial in understanding how climate change can affect mussels. This work examines three factors (load at failure, thread extensibility, and total thread counts) that indicate the performance of byssal threads as well as condition index to assess impacts on the physiological condition of mussels held in artificial seawater acidified by the addition of CO2. [...]"

Source: PLOS ONE
Authors: Grant Dickey et al.
DOI: 10.1371/journal.pone.0205908

Read the full article here.


Showing 1 - 10 of 39 results.
Items per Page 10
of 4