News

Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks

Abstract.

"Oceanic anoxic events (OAEs) document major perturbations of the global carbon cycle with repercussions for the Earth's climate and ocean circulation that are relevant to understanding future climate trends. Here, we compare the onset and development of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). OAE1a and OAE2 exhibit remarkable similarities in the evolution of their carbon isotope (δ13C) records, with long-lasting negative excursions preceding the onset of the main positive excursions, supporting the view that both OAEs were triggered by massive emissions of volcanic CO2 into the atmosphere. However, there are substantial differences, notably in the durations of individual phases within the δ13C positive excursions of both OAEs. [...]"

Source: Climate of the Past
Authors: Sebastian Beil et al.
DOI: 10.5194/cp-16-757-2020

Read the full article here.


Response of the western proto-North Atlantic margin to the early Aptian Oceanic Anoxic Event (OAE) 1a: an example from the Cupido platform margin

-Gulf of Mexico, NE Mexico

Abstract.

"Integrated microfacies and geochemical analyses conducted on five stratigraphic sections in northeastern Mexico (ancentral western margin of the proto-North Atlantic) reveal major paleoenvironmental changes in shallow water and pelagic environments in the prelude and run-up of the early Aptian oceanic anoxic event (OAE) 1a. During the Barremian–Aptian transition, the replacement of photozoan rudist-coral by mesotrophic/eutrophic orbitolinid-miliolid communities in the Cupido platform occurred in association with increased nutrient input. [...]"

Source: Cretaceous Research
Authors: Fernando Núñez-Useche et al.
DOI: 10.1016/j.cretres.2020.104488

Read the full article here.


High Resolution Osmium Data Record Three Distinct Pulses of Magmatic Activity During Cretaceous Oceanic Anoxic Event 2 (OAE-2)

Abstract.

"Oceanic anoxic Event 2 (OAE-2) occurred at the Cenomanian-Turonian boundary (∼94.1 Ma) and was a time of profound global changes in ocean chemistry and the carbon cycle. This event was characterized by a positive carbon isotope excursion (CIE) caused by massive organic carbon burial, global greenhouse temperatures, ocean deoxygenation, and changes in ocean life driven by large igneous province (LIP) activity. LIPS throughout the Phanerozoic have had dynamic magma flux, with episodes of major eruptions interspersed with periods of relatively less intense eruptions. [...]"

Source: Geochimica et Cosmochimica Acta
Authors: Daniel L. Sullivan et al.
DOI: 10.1016/j.gca.2020.04.002

Read the full article here.


Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event

Abstract.

"The Toarcian Oceanic Anoxic Event (TOAE, Early Jurassic, ~182 Ma ago) was characterised by severe environmental perturbations which led to habitat degradation and extinction of marine species. Warming-induced anoxia is usually identified as main driver, but because marine life was also affected in oxygenated environments the role of raised temperature and its effects on marine life need to be addressed. [...]"

Source: Scientific Reports
Authors: Veronica Piazza et al.
DOI: 10.1038/s41598-020-61393-5

Read the full article here.


Neritic ecosystem response to Oceanic Anoxic Event 2 in the Cretaceous Western Interior Seaway, USA

Abstract.

"Cretaceous oceanic anoxic events (OAEs) were periods of geologically short (<1 million years) global change characterized by elevated temperatures, changes in ocean biogeochemistry, ecological turnover, and the global-scale deposition of black shales. After decades of OAE research, the intensity and spatiotemporal heterogeneity of ocean anoxia and its direct effects on marine ecology remain areas of active study. We present high-resolution organic geochemical and foraminiferal records from the western margin of the Western Interior Seaway (WIS) during the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2, ~94 Ma) that indicate reorganization of a neritic ecosystem in response to sea-level rise, and dynamic changes in redox conditions that were likely driven by enhanced marine productivity. [...]"

Source: Palaeogeography, Palaeoclimatology, Palaeoecology
Authors: F. Garrett Boudinot et al.
DOI: 10.1016/j.palaeo.2020.109673

Read the full article here.


Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a

Abstract.

"The early Aptian Oceanic Anoxic Event (OAE) 1a represents a major perturbation of the Earth's climate system and in particular the carbon cycle, as evidenced by widespread preservation of organic matter in marine settings and a characteristic negative carbon isotopic excursion (CIE) at its onset, followed by a broad positive CIE. The contemporaneous emplacement of a large igneous province (LIP) is invoked as a trigger for OAE 1a (and OAEs in general), but this link and the ultimate source of the carbon perturbation at the onset of OAEs is still debated. [...]"

Source: 
Authors: Markus Adloff et al.
DOI: 10.1016/j.epsl.2019.115947

Read the full article here.


Cretaceous Oceanic Anoxic Events prolonged by phosphorus cycle feedbacks

Abstract.

"Oceanic Anoxic Events (OAEs) document major perturbations of the global carbon cycle with repercussions on the Earth’s climate and ocean circulation that are relevant to understand future climate trends. Here, we compare sedimentation patterns, nutrient cycling, organic carbon accumulation and carbon isotope variability across Cretaceous Oceanic Anoxic Events OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). [...]"

Source: Climate of the Past (Preprint)
Authors: Sebastian Beil et al.
DOI: 10.5194/cp-2019-118

Read the full article here.


Atmosphere–ocean oxygen and productivity dynamics during early animal radiations

Abstract.

"The proliferation of large, motile animals 540 to 520 Ma has been linked to both rising and declining O2 levels on Earth. To explore this conundrum, we reconstruct the global extent of seafloor oxygenation at approximately submillion-year resolution based on uranium isotope compositions of 187 marine carbonates samples from China, Siberia, and Morocco, and simulate O2 levels in the atmosphere and surface oceans using a mass balance model constrained by carbon, sulfur, and strontium isotopes in the same sedimentary successions. [...]"

Source: PNAS
Authors: Tais W. Dahl et al.
DOI: 10.1073/pnas.1901178116

Read the full article here.


High-resolution records of Oceanic Anoxic Event 2:

Insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean

Abstract.

"Oceanic Anoxic Event 2 (OAE 2), which took place around the Cenomanian–Turonian boundary (∼94 Ma), is associated with extreme perturbations to the global carbon cycle, affected ocean basins worldwide and was associated with significant biological turnover. Although this event has been well studied in the northern hemisphere, the evolution and character of OAE 2, particularly in terms of the vertical and lateral extent of anoxia, is poorly constrained in the palaeo-Pacific Ocean. [...]"

Source: Earth and Planetary Science Letters
Authors: S. K. Gangl et al.
DOI: 10.1016/j.epsl.2019.04.028

Read the full article here.


The far-future ocean: Warm yet oxygen-rich

"The oceans are losing oxygen. Numerous studies based on direct measurements in recent years have shown this. Since water can dissolve less gas as temperatures rise, these results were not surprising. In addition to global warming, factors such as eutrophication of the coastal seas also contribute to the ongoing deoxygenation. [...]"

Source: Phys.org

Read the full article here.


Showing 1 - 10 of 25 results.
Items per Page 10
of 3