News

Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica

Abstract.

"Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. [...]"

Source: Frontiers in Marine Science
Authors: Carlos Neira et al.
DOI: 10.3389/fmars.2018.00448

Read the full article here.


Subsurface Fine‐Scale Patterns in an Anticyclonic Eddy Off Cap‐Vert Peninsula Observed From Glider Measurements

Abstract.

"Glider measurements acquired along four transects between Cap‐Vert Peninsula and the Cape Verde archipelago in the eastern tropical North Atlantic during March–April 2014 were used to investigate fine‐scale stirring in an anticyclonic eddy. The anticyclone was formed near 12°N off the continental shelf and propagated northwest toward the Cape Verde islands. At depth, between 100 and –400 m, the isolated anticyclone core contained relatively oxygenated, low‐salinity South Atlantic Central Water, while the surrounding water masses were saltier and poorly oxygenated. [...]"

Source: Oceans
Authors: Nicolas Kolodziejczyk et al.
DOI: 10.1029/2018JC014135

Read the full article here.


[German] Dem Ozean geht die Luft aus

"In den tropischen und subtropischen Meeren existieren in mittleren Tiefen riesige sauerstoffarme Zonen. Im Zuge des Klimawandels dehnen sie sich immer stärker aus. Auch in Küstenregionen entstehen durch Stickstoffbelastung aus der Landwirtschaft lebensfeindliche Zonen ohne Sauerstoff – mit verheerenden Folgen für das marine Ökosystem [...]"

Source: Spektrum.de

Read the full article here.


Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation

Abstract.

"Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50–100 years, but with greater oxygen declines in intermediate waters (100–600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. [...]"

Source: Annual Review of Marine Science
Author: L. Levin
DOI: 10.1146/annurev-marine-121916-063359

Read the full article here.


Microbial niches in marine oxygen minimum zones

Abstract.

"In the ocean’s major oxygen minimum zones (OMZs), oxygen is effectively absent from sea water and life is dominated by microorganisms that use chemicals other than oxygen for respiration. Recent studies that combine advanced genomic and chemical detection methods are delineating the different metabolic niches that microorganisms can occupy in OMZs. Understanding these niches, the microorganisms that inhabit them, and their influence on marine biogeochemical cycles is crucial as OMZs expand with increasing seawater temperatures."

Source: Nature Reviews Microbiology
Authors: Anthony D. Bertagnolli & Frank J. Stewart
DOI: 10.1038/s41579-018-0087-z

Read the full article here.


Lipids as indicators of nitrogen cycling in present and past anoxic oceans

Summary.

"Nitrogen (N) cycling influences primary production in the ocean and, hence, the global climate. It is performed by a variety of microorganisms, including eukaryotes, bacteria and archaea in oxic, suboxic, and anoxic waters. Our knowledge of the reactions involved in marine N cycling and its associated microorganisms has greatly increased in the last decade due to the development of multiple culture-independent methods. Among them are gene and lipid biomarkers, which hold taxonomic potential and can be successfully applied in modern day and paleoenvironmental studies. However, many aspects of N cycling and their long-term implications for the marine environment and the global climate still require more study, especially in suboxic and anoxic waters, including the oxygen-deficient zones (ODZs), which are expanding in the modern oceans.

Author: Martina Sollai

Read the full article here.


Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies

Abstract.

"Because of anthropogenic global warming, the world ocean is currently losing oxygen. This trend called ocean deoxygenation is particularly pronounced in low-latitude upwelling-related oxygen minimum zones (OMZs). In these areas, the temperature-related oxygen drawdown is additionally modulated by biogeochemical feedback mechanisms between sedimentary iron (Fe) and phosphorus release, water column nitrogen cycling and primary productivity. Similar feedbacks were likely active during past periods of global warming and oceandeoxygenation. However, their integrated role in amplifying or mitigating climate change-driven ocean anoxia has not been evaluated in a systematic fashion. [...]"

Source: Earth-Science Reviews
Author: Florian Scholz
DOI: 10.1016/j.earscirev.2018.08.002

Read the full article here.


Modulation of the vertical particle transfer efficiency in the oxygen minimum zone off Peru

Abstract.

"The fate of the organic matter (OM) produced by marine life controls the major biogeochemical cycles of the Earth's system. The OM produced through photosynthesis is either preserved, exported towards sediments or degraded through remineralisation in the water column. The productive eastern boundary upwelling systems (EBUSs) associated with oxygen minimum zones (OMZs) would be expected to foster OM preservation due to low O2 conditions. But their intense and diverse microbial activity should enhance OM degradation. To investigate this contradiction, sediment traps were deployed near the oxycline and in the OMZ core on an instrumented moored line off Peru. [...]"

Source: Biogeosciences
Authors: Marine Bretagnon et al.
DOI: 10.5194/bg-15-5093-2018

Read the full article here.


H2S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations

Abstract.

"Dissolved iron (DFe) concentrations in oxygen minimum zones (OMZs) of Eastern Boundary Upwelling Systems are enhanced as a result of high supply rates from anoxic sediments. However, pronounced variations in DFe concentrations in anoxic coastal waters of the Peruvian OMZ indicate that there are factors in addition to dissolved oxygen concentrations (O2) that control Fe cycling. [...]"

Source: Scientific Reports
Authors: Christian Schlosser et al. 
DOI: 10.1038/s41598-018-30580-w

Read the full article here.


A Novel Eukaryotic Denitrification Pathway in Foraminifera

Abstract.

"Benthic foraminifera are unicellular eukaryotes inhabiting sediments of aquatic environments. Several species were shown to store and use nitrate for complete denitrification, a unique energy metabolism among eukaryotes. The population of benthic foraminifera reaches high densities in oxygen-depleted marine habitats, where they play a key role in the marine nitrogen cycle. However, the mechanisms of denitrification in foraminifera are still unknown, and the possibility of a contribution of associated bacteria is debated. Here, we present evidence for a novel eukaryotic denitrification pathway that is encoded in foraminiferal genomes. [...]"

Source: Current Biology
Authors: Christian Woehle et al.
DOI: 10.1016/j.cub.2018.06.027

Read the full article here.


Showing 1 - 10 of 79 results.
Items per Page 10
of 8