News

Oceanic organic carbon as a possible first-order control on the carbon cycle during the Bathonian–Callovian

Abstract.

"Oceans are the largest, readily exchangeable, superficial carbon reservoir; a current challenge in investigating past and present environments and predict future evolution relates to the role of oceanic carbon in regulating Earths' carbon cycle and climate. At least one paired δ13Ccarb-TOC decoupling event is noted in the Late Bathonian–Early Callovian. [...]"

Source: Global and Planetary Change
Authors: Author links open overlay panelRicardo L.Silva
DOI: 10.1016/j.gloplacha.2019.103058


Read the full article here.


Cretaceous Oceanic Anoxic Events prolonged by phosphorus cycle feedbacks

Abstract.

"Oceanic Anoxic Events (OAEs) document major perturbations of the global carbon cycle with repercussions on the Earth’s climate and ocean circulation that are relevant to understand future climate trends. Here, we compare sedimentation patterns, nutrient cycling, organic carbon accumulation and carbon isotope variability across Cretaceous Oceanic Anoxic Events OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). [...]"

Source: Climate of the Past (Preprint)
Authors: Sebastian Beil et al.
DOI: 10.5194/cp-2019-118

Read the full article here.


Anaerobic nitrogen cycling on a Neoarchaean ocean margin

Abstract.

"A persistently aerobic marine nitrogen cycle featuring the biologically mediated oxidation of ammonium to nitrate has likely been in place since the Great Oxidation Event (GOE) some 2.3 billion years ago. Although nitrogen isotope data from some Neoarchaean sediments suggests transient nitrate availability prior to the GOE, these data are open to other interpretations. [...]"

Source: Earth and Planetary Science Letters
Authors: C.Mettam et al.
DOI: 10.1016/j.epsl.2019.115800

Read the full article here.


Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans

Abstract.

"The late Ludlow Lau Event was a severe biotic crisis in the Silurian, characterized by resurgent microbial facies and faunal turnover rates otherwise only documented during the "big five" mass extinctions. This asynchronous late Silurian marine extinction event preceded an associated positive carbon isotope excursion (CIE), the Lau CIE, although a mechanism for this temporal offset remains poorly constrained. [...]"

Source: GeoScienceWorld
Authors: Chelsie N. Bowman et al.
DOI: 10.1130/G46571.1

Read the full article here.


Oxygen depletion in ancient oceans caused major mass extinction

"For years, scientists struggled to connect a mechanism to this mass extinction, one of the 10 most dramatic ever recorded in Earth's history. Now, researchers have confirmed that this event, referred to by scientists as the Lau/Kozlowskii extinction, was triggered by an all-too-familiar culprit: rapid and widespread depletion of oxygen in the global oceans. [...]"

Source: ScienceDaily

Read the full article here.


Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox

Abstract.

"Oxygen is a prerequisite for all large and motile animals. It is a puzzling paradox that fossils of benthic animals are often found in black shales with geochemical evidence for deposition in marine environments with anoxic and sulfidic bottom waters. It is debated whether the geochemical proxies are unreliable, affected by diagenesis, or whether the fossils are transported from afar or perhaps were not benthic.  [...]"

Source: Scientific Reports
Authors: Tais W. Dahl et al.
DOI: 10.1038/s41598-019-48123-2

Read the full article here.


Chromium isotope cycling in the water column and sediments of the Peruvian continental margin

Abstract.

"Chromium (Cr) isotope fractionation is sensitive to redox changes and the Cr isotopic composition (δ53Cr) of sedimentary rocks has been used to reconstruct marine redox conditions and atmospheric oxygenation in the past. However, little is known about the behaviour of chromium isotopes across modern marine redox boundaries. We investigated Cr concentrations and δ53Cr variations in seawater and sediment across the Peruvian oxygen minimum zone (OMZ) to provide a better understanding of Cr cycling in the ocean. [...]"

Source: Geochimica et Cosmochimica
Authors: S. Bruggmann et al.
DOI: 10.1016/j.gca.2019.05.001

Read the full article here.


High-resolution records of Oceanic Anoxic Event 2:

Insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean

Abstract.

"Oceanic Anoxic Event 2 (OAE 2), which took place around the Cenomanian–Turonian boundary (∼94 Ma), is associated with extreme perturbations to the global carbon cycle, affected ocean basins worldwide and was associated with significant biological turnover. Although this event has been well studied in the northern hemisphere, the evolution and character of OAE 2, particularly in terms of the vertical and lateral extent of anoxia, is poorly constrained in the palaeo-Pacific Ocean. [...]"

Source: Earth and Planetary Science Letters
Authors: S. K. Gangl et al.
DOI: 10.1016/j.epsl.2019.04.028

Read the full article here.


Multidecadal Changes in Marine Subsurface Oxygenation Off Central Peru During the Last ca. 170 Years

Abstract.

"Subsurface water masses with permanent oxygen deficiency (oxygen minimum zones, OMZ) are typically associated with upwelling regions and exhibit a high sensitivity to climate variability. Over the last decade, several studies have reported a global ocean deoxygenation trend since 1960 and a consequent OMZ expansion. However, some proxy records suggest an oxygenation trend for the OMZ over the margins of the Tropical North East Pacific since ca. 1850. [...]"

Source: Frontiers in Marine Science
Authors: Jorge Cardich et al.
DOI: 10.3389/fmars.2019.00270

Read the full article here.


Oxygen minimum zone-type biogeochemical cycling in the Cenomanian-Turonian Proto-North Atlantic across Oceanic Anoxic Event 2

Abstract.

"Oceanic Anoxic Events (OAEs) in Earth's history are regarded as analogues for current and future ocean deoxygenation, potentially providing information on its pacing and internal dynamics. In order to predict the Earth system's response to changes in greenhouse gas concentrations and radiative forcing, a sound understanding of how biogeochemical cycling differs in modern and ancient marine environments is required. [...]"

Source: Earth and Planetary Science Letters
Authors: Florian Scholz et al.
DOI: 10.1016/j.epsl.2019.04.008

Read the full article here.


Showing 1 - 10 of 66 results.
Items per Page 10
of 7