News

What could cause the Mississippi Bight to become hypoxic?

"Coastal regions with low dissolved oxygen (known as hypoxia) can lead to poor water quality and harm regional fisheries. These areas of low dissolved oxygen are expanding and expected to continue growing in coming years due to human impacts on the environment.

A recent article published in Continental Shelf Research explores aspects of the environmental conditions that can potentially lead to hypoxia in the Mississippi Bight region of the northern Gulf of Mexico. This area extends from Apalachicola in Florida to the Mississippi River Delta. [...]"

Source:  EurekAlert!

Read the full article here.


[German] Dem Ozean geht die Luft aus

"In den tropischen und subtropischen Meeren existieren in mittleren Tiefen riesige sauerstoffarme Zonen. Im Zuge des Klimawandels dehnen sie sich immer stärker aus. Auch in Küstenregionen entstehen durch Stickstoffbelastung aus der Landwirtschaft lebensfeindliche Zonen ohne Sauerstoff – mit verheerenden Folgen für das marine Ökosystem [...]"

Source: Spektrum.de

Read the full article here.


[German] TV reports about ocean deoxygenation in the german media

The german Internet and TV channel HYPERRAUM.TV published two reports in collaboration with the SFB754 experts Martin Visbeck and Andreas Oschlies.

German speaking users may find the videos online by using one of the two links:

Report 1: Fische in Atemnot

Report 2: Sauerstoff-Transporte


Oregon Now Has A Hypoxia Season, Just Like A Wildfire Season

"Scientists say warming ocean temperatures mean Oregon’s coastal waters now have a low-oxygen season, or hypoxia season, just as the state’s forests have a fire season.

Hypoxia is a condition in which the ocean water close to the sea floor has such low levels of dissolved oxygen that the organisms living down there die.

Some of the first signs came in 2002 when dead crabs were hauled up in crab pots. Since then, scientists and crabbers say things have worsened."

Source: earthfix.info
Author: Kristian Foden-Vencil

Read the full article here.


Shift in large-scale Atlantic circulation causes lower-oxygen water to invade Canada’s Gulf of St. Lawrence

"The Gulf of St. Lawrence has warmed and lost oxygen faster than almost anywhere else in the global oceans. The broad, biologically rich waterway in Eastern Canada drains North America’s Great Lakes and is popular with fishing boats, whales and tourists.

A new study led by the University of Washington looks at the causes of this rapid deoxygenation and links it to two of the ocean’s most powerful currents: the Gulf Stream and the Labrador Current. The study, published Sept. 17 in Nature Climate Change, explains how large-scale climate change already is causing oxygen levels to drop in the deeper parts of this waterway."

Source: University of Washington
Author: Hannah Hickey

Read the full article here.


Newsletter

As of today it is possible to subscribe to our mailing list.

Depending on the amount of publications and articles we will summarize the activities on this blog in a newsletter every two to four weeks for everyone not following the blog regularly.

As a regular member to the list you can not forward any messages. If you want to suggest new articles or would like to contact us because of any other issue, please use following e-mail address sfb754@geomar.de.

Please use the link above to get to the subscription page. You can enter or leave the list using this link at any time.


Earth's oxygen increased in gradual steps rather than big bursts

"A carbon cycle anomaly discovered in carbonate rocks of the Neoproterozoic Hüttenberg Formation of north-eastern Namibia follows a pattern similar to that found right after the Great Oxygenation Event, hinting at new evidence for how Earth's atmosphere became fully oxygenated.

By using the Hüttenberg Formation, which formed between a billion and half a billion years ago, to study the time between Earth's change from an anoxic environment (i.e. one lacking oxygen) to a more hospitable environment that heralded the animal kingdom, a team of researchers led by Dr. Huan Cui of the NASA Astrobiology Institute at the University of Wisconsin–Madison discovered a sustained, high level of carbon. This influx of carbon, coupled with changes in other elements, indicates how changing levels of oceanic oxygen may have lent a helping hand to early animal evolution. [...]"

Source: Phys.org

Read the full article here.


Acid coastal seas off US putting common fish species at risk

"Scientists have shown that coastal waters and river estuaries can exhibit unique vulnerabilities to acidification than offshore waters. This acidification, detected in waters off the United States West Coast and the Gulf of Mexico, can lead to disorientation and cognitive problems in some marine fish species, such as salmon, sharks, and cod. This work is presented at the Goldschmidt Conference in Boston.
 

Scientists have recently discovered that marine creatures can be adversely affected by hypercapnia, a condition of too much dissolved CO2 in seawater (CO2 partial pressure, or pCO2). When this level rises above 1000 micro atmospheres (1000 μatm), some fish species suffer cognitive problems and disorientation, such as losing their way or even swimming towards predators. Surface ocean CO2 partial pressures tend to be around 400 μatm, so until now scientists have thought that hypercapnia was a problem which would only become apparent over time in subsurface waters. [...]"

Source: Phys.org

Read the full article here.


Back to the future of climate change

Summary:

Researchers are looking to the geologic past to make future projections about climate change. Their research focuses on the ancient Tethys Ocean (site of the present-day Mediterranean Sea) and provides a benchmark for present and future climate and ocean models.

Source: Science Daily

Read the full article here.


How nutrients are removed in oxygen-depleted regions of the ocean

"In the course of global climate change, scientists are observing the increase of low-oxygen areas in the ocean, also termed oxygen minimum zones (OMZs). Large-scale OMZs exist, for example, in the Pacific off the coast of South America or in the Indian Ocean. Since little to no oxygen is present in these regions - depending on the depth of the water - organisms whose metabolisms is independent of oxygen have a distinct advantage. These organisms include some representatives of the foraminifera: unicellular, shell-forming microorganisms, which have a nucleus and thus belong to the eukaryotes. Their life style involves a particular metabolic pathway termed anaerobic respiration. In the absence of oxygen, they convert nitrate present in the water into molecular nitrogen. [...]"

Source: Kiel University

Read the full article here.

 

 


Showing 1 - 10 of 67 results.
Items per Page 10
of 7