News

Will ocean zones with low oxygen levels expand or shrink?

"Computer simulations show that areas of the ocean that have low levels of dissolved oxygen will expand, but then shrink, in response to global warming — adding to an emerging picture of the finely balanced processes involved.

Global warming has reduced the amount of dissolved oxygen in the ocean by 2% since 1960. A major concern is that the rate of loss of dissolved oxygen has already increased by up to 20% in tropical waters, expanding the volume of regions called oxygen minimum zones (OMZs), where levels of dissolved oxygen are already very low."

Source: Nature
Authors: Laure Resplandy
DOI: 10.1038/d41586-018-05034-y

Read the full article here.


Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming

Abstract.

"Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century.  [...]"

Source: Global Biogeochemical Cycles
Authors: Weiwei Fu et al.
DOI: 10.1002/2017GB005788

 Read the full article here.


UNM scientists find widespread ocean anoxia as cause for past mass extinction

"New research sheds light on first of five major mass extinctions

For decades, scientists have conducted research centered around the five major mass extinctions that have shaped the world we live in. The extinctions date back more than 450 million years with the Late Ordovician Mass Extinction to the deadliest extinction, the Late Permian extinction 250 million years ago that wiped out over 90 percent of species. [...]"

Source: EurekAlert!

Read the full article here.


Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification

Abstract.

"The Ediacaran–Cambrian transition is a critical period in Earth history, during which both marine environment and life experienced drastic changes. It was suggested that pervasive oxygenation and associated chemical changes in the ocean have potentially triggered the rapid diversification of early Cambrian metazoans. The timing and process of ocean oxygenation, however, have not been well constrained. [...]"

Source: Palaeogeography, Palaeoclimatology, Palaeoecology
Authors: Xiangkuan Zhao et al.
DOI: 10.1016/j.palaeo.2018.05.009

Read the full article here.


Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria

Abstract.

"Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. [...]"

Source: Nature Communications
Authors: Cameron M. Callbeck et al.
DOI: 10.1038/s41467-018-04041-x

Read the full article here.


Global Insurance Industry Steps Up to Turn Ocean Risk Into Resilience

At the Ocean Risk Summit in Bermuda, experts gathered to advance a new model for how insurance and reinsurance companies can leverage their products and balance sheets to restore marine ecosystems and slow climate change impacts.

"When Hurricane Irma smashed into the British Virgin Islands last September at speeds faster than a jumbo jet at takeoff, the devastation was total. The storm caused damage valued at three times more than the Caribbean islands’ entire gross domestic product, while the territory’s economy – including its biggest industry, tourism – shut down for months. [...]"

Source: Oceans Deeply

Read the full article here.


The Baltic Sea as a time machine for the future coastal ocean

Abstract.

"Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. [...]"

Source: Science Advances
Authors: Thorsten B. H. Reusch et al.
DOI: 10.1126/sciadv.aar8195

Read the full article here.


Will ocean zones with low oxygen levels expand or shrink?

"Computer simulations show that areas of the ocean that have low levels of dissolved oxygen will expand, but then shrink, in response to global warming — adding to an emerging picture of the finely balanced processes involved.

Global warming has reduced the amount of dissolved oxygen in the ocean by 2% since 1960. A major concern is that the rate of loss of dissolved oxygen has already increased by up to 20% in tropical waters, expanding the volume of regions called oxygen minimum zones (OMZs), where levels of dissolved oxygen are already very low. [...]"

Source: nature.com

Read the full article here.


A Sixteen-year Decline in Dissolved Oxygen in the Central California Current

Abstract.

"A potential consequence of climate change is global decrease in dissolved oxygen at depth in the oceans due to changes in the balance of ventilation, mixing, respiration, and photosynthesis. We present hydrographic cruise observations of declining dissolved oxygen collected along CalCOFI Line 66.7 (Line 67) off of Monterey Bay, in the Central California Current region, and investigate likely mechanisms.  [...]"

Source: Scientific Reports
Authors: Alice S. Ren et al.
DOI: 10.1038/s41598-018-25341-8

Read the full article here.


The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

Abstract.

"The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic–biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. [...]"

Source: Biogeosciences
Authors: Isaac D. Irby et al.
DOI: 10.5194/bg-15-2649-2018

Read the full article here.


Showing 1 - 10 of 76 results.
Items per Page 10
of 8