News

Organic Heterogeneities in Foraminiferal Calcite Traced Through the Distribution of N, S, and I Measured With NanoSIMS:

A New Challenge for Element-Ratio-Based Paleoproxies?

 

Abstract.

"Oceanic oxygen decline due to anthropogenic climate change is a matter of growing concern. A quantitative oxygen proxy is highly desirable in order to identify and monitor recent dynamics as well as to reconstruct pre-Anthropocene changes in amplitude and extension of oxygen depletion. Geochemical proxies like foraminiferal I/Ca ratios seem to be promising redox proxies. [...]"

Source: Frontiers in Earth Science
Authors: Nicolaas Glock et al.
DOI: 10.3389/feart.2019.00175

Read the full article here.


Chromium isotope cycling in the water column and sediments of the Peruvian continental margin

Abstract.

"Chromium (Cr) isotope fractionation is sensitive to redox changes and the Cr isotopic composition (δ53Cr) of sedimentary rocks has been used to reconstruct marine redox conditions and atmospheric oxygenation in the past. However, little is known about the behaviour of chromium isotopes across modern marine redox boundaries. We investigated Cr concentrations and δ53Cr variations in seawater and sediment across the Peruvian oxygen minimum zone (OMZ) to provide a better understanding of Cr cycling in the ocean. [...]"

Source: Geochimica et Cosmochimica
Authors: S. Bruggmann et al.
DOI: 10.1016/j.gca.2019.05.001

Read the full article here.


Ventilation of the Northern Baltic Sea (Preprint)

Abstract.

"The Baltic Sea is a semi-enclosed, brackish water sea in northern Europe. The deep basins of the central Baltic Sea regularly show hypoxic conditions. In contrast, the northern parts of the Baltic Sea, the Bothnian Sea and Bay, are well oxygenated. Lateral inflows or a ventilation due to convection are possible mechanisms for high oxygen concentrations in the deep water of the northern Baltic Sea. [...]"

Source: Ocean Science
Authors: Thomas Neumann et al.
DOI: 10.5194/os-2019-48

Read the full article here.


High-resolution records of Oceanic Anoxic Event 2:

Insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean

Abstract.

"Oceanic Anoxic Event 2 (OAE 2), which took place around the Cenomanian–Turonian boundary (∼94 Ma), is associated with extreme perturbations to the global carbon cycle, affected ocean basins worldwide and was associated with significant biological turnover. Although this event has been well studied in the northern hemisphere, the evolution and character of OAE 2, particularly in terms of the vertical and lateral extent of anoxia, is poorly constrained in the palaeo-Pacific Ocean. [...]"

Source: Earth and Planetary Science Letters
Authors: S. K. Gangl et al.
DOI: 10.1016/j.epsl.2019.04.028

Read the full article here.


Gulf Dead Zone Looms Large in 2019

"In 2019, predictions indicate that the Gulf of Mexico will retain the dubious distinction of having the second-largest low-oxygen dead zone on Earth (the Baltic Sea remains firmly in first place). By the end of the summer, the hypoxic region on the seafloor at the mouth of the Mississippi River is expected to occupy over 22,000 square kilometers—an area the size of the state of Massachusetts. [...]

Source: Earth & Space Science News
Author: Mary Caperton Morton
DOI: 10.1029/2019EO128019

Read the full article here.


Anoxygenic photosynthesis and the delayed oxygenation of Earth’s atmosphere

Abstract.

"The emergence of oxygenic photosynthesis created a new niche with dramatic potential to transform energy flow through Earth’s biosphere. However, more primitive forms of photosynthesis that fix CO2 into biomass using electrons from reduced species like Fe(II) and H2 instead of water would have competed with Earth’s early oxygenic biosphere for essential nutrients. [...]"

Source: Nature Communications
Authors: Kazumi Ozaki et al.
DOI: 10.1038/s41467-019-10872-z

Read the full article here.


Nitrous oxide in the northern Gulf of Aqaba and the central Red Sea

Abstract.

"Nitrous oxide (N2O) is a climate-relevant atmospheric trace gas. It is produced as an intermediate of the nitrogen cycle. The open and coastal oceans are major sources of atmospheric N2O. However, its oceanic distribution is still largely unknown. Here we present the first measurements of the water column distribution of N2O in the Gulf of Aqaba and the Red Sea. [...]"

Source: Deep Sea Research Part II: Topical Studies in Oceanography
Authors: Hermann W.Bange et al.
DOI: 10.1016/j.dsr2.2019.06.015

Read the full article here.


Diapycnal dissolved organic matter supply into the upper Peruvian oxycline

Abstract.

"The eastern tropical South Pacific (ETSP) hosts the Peruvian upwelling system, which represents one of the most productive areas in the world ocean. High primary production followed by rapid heterotrophic utilization of organic matter supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world ocean, where dissolved oxygen (O2) concentrations reach less than 1 µmol kg−1. [...]"

Source: Biogeosciences
Authors: Alexandra N. Loginova et al.
DOI: 10.5194/bg-16-2033-2019

Read the full article here.

 


Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification..

..over the past 600 years

Abstract.

"The stable sedimentary nitrogen isotope compositions of bulk organic matter (δ15Nbulk) and the silicon isotope composition of diatoms (δ30SiBSi) both mainly reflect the degree of past nutrient utilization by primary producers. However, in ocean areas where anoxic and suboxic conditions prevail, the δ15Nbulk signal ultimately recorded within the sediments is also influenced by water column denitrification, causing an increase in the subsurface δ15N signature of dissolved nitrate (δ15NO−3) upwelled to the surface. [...]"

Source: Biogeosciences
Authors: Kristin Doering et al.
DOI: 10.5194/bg-16-2163-2019

Read the full article here.


Integrating Biogeochemistry and Ecology Into Ocean Data Assimilation Systems

Abstract.

"Monitoring and predicting the biogeochemical state of the ocean and marine ecosystems is an important application of operational oceanography that needs to be expanded. The accurate depiction of the ocean’s physical environment enabled by Global Ocean Data Assimilation Experiment (GODAE) systems, in both real-time and reanalysis modes, is already valuable for various applications, such as the fishing industry and fisheries management. However, most of these applications require accurate estimates of both physical and biogeochemical ocean conditions over a wide range of spatial and temporal scales. [...]"

Source: Oceanography
Authors: Pierre Brasseur et al.
DOI: 10.5670/oceanog.2009.80

Read the full article here.


Showing 1 - 10 of 112 results.
Items per Page 10
of 12