News

Heat and carbon coupling reveals ocean warming due to circulation changes

Abstract.

Anthropogenic global surface warming is proportional to cumulative carbon emissions1,2,3; this relationship is partly determined by the uptake and storage of heat and carbon by the ocean4. The rates and patterns of ocean heat and carbon storage are influenced by ocean transport, such as mixing and large-scale circulation5,6,7,8,9,10. However, existing climate models do not accurately capture the observed patterns of ocean warming, with a large spread in their projections of ocean circulation and ocean heat uptake8,11. Additionally, assessing the influence of ocean circulation changes (specifically, the redistribution of heat by resolved advection) on patterns[...]"

Source: Nature
Authors: Ben Bronselaer et al.
DOI: https://doi.org/10.1038/s41586-020-2573-5

Read the full article here.


Physical Mechanisms Driving Oxygen Subduction in the Global

Abstract.

"Future changes in subduction are suspected to be critical for the ocean deoxygenation predicted by climate models over the 21st century. However, the drivers of global oxygen subduction have not been fully described or quantified. Here, we address the physical mechanisms responsible for the oxygen transport across the late‐winter mixed layer base and their relation with water mass formation. Up to 70% of the global oxygen uptake takes place during Mode Water subduction mostly in the Southern Ocean[...]"

 

Source: Advancing Earth and Space Science
Authors: Esther Portela et al.
DOI: https://doi.org/10.1029/2020GL089040

Read the full article here.

 

 


Recovery from multi-millennial natural costal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity

Abstract.

"Enhanced nutrient input and warming have led to the development of low oxygen (hypoxia) in coastal waters globally. For many coastal areas, insight into redox conditions prior to human impact is lacking. Here, we reconstructed bottom water redox conditions and sea surface temperatures (SSTs) for the coastal Stockholm Archipelago over the past 3000 yr. Elevated sedimentary concentrations of molybdenum indicate (seasonal) hypoxia between 1000 b.c.e. and 1500 c.e. Biomarker[...]"

 

Source: Association for the Sciences of Limnology and Oceanography
Authors: Niels A. G. M. van Helmond et al.
DOI: https://doi.org/10.1002/lno.11575

Read the full article here.

 


Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern topical North Pacific Ocean oxygen minimum zone

Abstract.

"Oceanic oxygen minimum zones (OMZs) play a pivotal role in biogeochemical cycles due to extensive microbial activity. How OMZ microbial communities assemble and respond to environmental variation is therefore essential to understanding OMZ functioning and ocean biogeochemistry. Sampling along depth profiles at five stations in the eastern tropical North Pacific Ocean (ETNP), we captured systematic variations in dissolved oxygen (DO) and associated variables (nitrite, chlorophyll, and ammonium) with depth and between stations. We quantitatively analysed relationships between oceanographic gradients and microbial community assembly and activity based on paired 16S rDNA and 16S rRNA sequencing. Overall microbial community[...] "

 

Source: Society for Applied Microbiology
Authors: J. Michael Berman et al.
DOI: https://doi.org/10.1111/1462-2920.15215

Read the full article here.


Latitudinal gradient in the respiration quotient and the implications for ocean oxygen availability

Abstract.

"Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient, r −O2:C  r−O2:C ) is consistently assumed constant but rarely, if ever, measured. Using a prognostic[...]"

 

Source: Proceedings of the National Academy of Sciences of the United States of America
Authors: Allison R. Moreno et al.
DOI:  https://doi.org/10.1073/pnas.2004986117

Read the full article here.


Contrasting Upper and Deep Ocean Oxygen Response to Protracted Global Warming

Abstract.

"It is well established that the ocean is currently losing dissolved oxygen (O2) in response to ocean warming, but the long‐term, equilibrium response of O2 to a warmer climate is neither well quantified nor understood. Here we use idealized multimillennial global warming simulations with a comprehensive Earth system model to show that the equilibrium response in ocean O2 differs fundamentally from the ongoing transient response. After physical equilibration of the model (>4,000 years) under a two times preindustrial CO2 scenario, the deep ocean[...]"

Source: Advancing Earth and Space Science
Authors: T. L. Frölicher et al.
DOI: https://doi.org/10.1029/2020GB006601

Read the full article here.


Mangrove-Derived Organic and Inorganic Carbon Exchanges Between the Sinnamary Estuarine System

Abstract.

"There is growing evidence that a substantial fraction of the dissolved organic and inorganic carbon (DOC and DIC) and particulate organic carbon (POC) can be exported from mangroves to the ocean. Yet our understanding of C fluxes in mangrove forests is limited to only few regional studies that exclude the world's longest sediment dispersal system connected to the Amazon River. The present study aims at (1) examining tidal fluctuations of DOC, POC, and DIC; their isotopes; and optical properties such as chromophoric dissolved organic matter[...]"


Source: Advancing Earth And Space Science
Authors: Raghab Ray et al.
DOI: https://doi.org/10.1029/2020JG005739

Read the full article here.

 

 

 


Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates

Abstract.

"High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNFs), nano- and picophytoplankton, and prokaryotes (heterotrophic Bacteria and Archaea) in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica.[...]"

 

Source: Biogeosciences
Authors: Stacy Deppeler et al.
DOI: 10.5194/bg-17-4153-2020

Read the  full article here.

 

 


Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?

Abstract.

"Oceanic primary production forms the basis of the marine food web and provides a pathway for carbon sequestration. Despite its importance, spatial and temporal variations of primary production are poorly observed, in large part because the traditional measurement techniques are laborious and require the presence of a ship. More efficient methods are emerging that take advantage of miniaturized sensors integrated into autonomous platforms such as gliders and profiling floats. One such method relies on determining the diurnal cycle of dissolved oxygen in the mixed layer and has been applied successfully to measurements from gliders and mixed-layer floats. [...]”

 

Source: Biogeosciences
Authors: Christopher Gordon et al.
DOI: 10.5194/bg-17-41110.5194

 

Read the full article here.

 


Imprint of Trace Dissolved Oxygen on Prokaryoplankton Community Structure in an Oxygen Minimum Zone

Abstract.

"The Eastern Tropical North Pacific (ETNP) is a large, persistent, and intensifying oxygen minimum zone (OMZ) that accounts for almost half of the total area of global OMZs. Within the OMZ core (∼350–700 m depth), dissolved oxygen is typically near or below the analytical detection limit of modern sensors (∼10 nM). Steep oxygen gradients above and below the OMZ core lead to vertical structuring of microbial communities that also vary between particle-associated (PA) and free-living (FL) size fractions [...]"

Source: Frontiers in Marine Science
Authors: Luis Medina Faull et al.
DOI: 10.3389/fmars.2020.00360

Read the full article here.

 


Showing 1 - 10 of 11 results.
Items per Page 10
of 2