News
Observed Seasonal and Interannual Controls on Coastal Oxygen and Dead Zones in the Indian Ocean
Abstract.
"A major concern is that global de-oxygenation will expand Oxygen minimum zones (OMZs) and favor coastal dead zones (DZs) where already low oxygen levels threaten ecosystems and adjacent coastal economies. The northern Indian ocean is home to both intense OMZs and DZs, and is surrounded by many kilometers of biodiverse and commercially valuable coastline. Exchanges between OMZs and shelf waters that contribute to coastal DZs are subject to the strong monsoonal seasonal cycle[...]"
Source: EGU General Assambly
Authors: Jenna Pearson et al.
DOI: https://doi.org/10.5194/egusphere-egu21-1421
Warum Sauerstoff im Meer fehlt
Video recommendation.
"Im Meer gibt es immer mehr Stellen, in denen es kaum noch Sauerstoff gibt: sogenannte "Todeszonen". Wir erklären euch, warum das ein Problem ist."
Source: ZDF
NOAA, partners to report on 2020 Gulf of Mexico ‘dead zone’ monitoring cruise
NOAA and its partners will report on their recent research cruise to measure the extent of the hypoxic or “dead zone” in the Gulf of Mexico during a media teleconference on Tue., Aug. 4 at 11:00 a.m. EDT.
In June, NOAA scientists forecasted this summer’s dead zone – an area of low to no oxygen that can kill fish and other marine life – to be approximately 6,700 square miles. That is larger than the long-term average measured size of 5,387 square miles, but substantially less than the record of 8,776 square miles set in 2017.
Slightly smaller-than-average 2020 ‘dead zone’ predicted for Chesapeake Bay
"Researchers from the University of Michigan, the Chesapeake Bay Program and the University of Maryland Center for Environmental Science are forecasting a slightly smaller-than-average Chesapeake Bay “dead zone” this year, due to reduced rainfall and less nutrient-rich runoff flowing into the bay from the watershed this spring. [...]"
Source: University of Michigan
Larger-than-average ‘dead zone’ expected for Gulf of Mexico
"NOAA scientists are forecasting this summer’s Gulf of Mexico hypoxic area or “dead zone” – an area of low to no oxygen that can kill fish and other marine life – to be approximately 6,700 square miles, larger than the long-term average measured size of 5,387 square miles but substantially less than the record of 8,776 square miles set in 2017. The annual prediction is based on U.S. Geological Survey river-flow and nutrient data. [...]"
Source: NOAA
Chesapeake Bay water quality declines by four percentage points
"An estimated 38% of the Chesapeake Bay and its tidal tributaries met clean water standards for clarity, oxygen and algae growth between 2016 and 2018. This score is lower than the record high 42% from the previous reporting period, but is still the fifth highest estimate of water quality standards attainment since 1985. This four percentage point decrease is due in large part to a decline in dissolved oxygen in the open waters of the Bay, those areas beyond the shoreline and shallows. Dissolved oxygen is necessary for the survival of the Bay’s aquatic species, and is a factor in the annual dead zone. [...]"
Uncovering diversity and metabolic spectrum of animals in dead zone sediments
Abstract.
"Ocean deoxygenation driven by global warming and eutrophication is a primary concern for marine life. Resistant animals may be present in dead zone sediments, however there is lack of information on their diversity and metabolism. Here we combined geochemistry, microscopy, and RNA-seq for estimating taxonomy and functionality of micrometazoans along an oxygen gradient in the largest dead zone in the world. [...]"
Source: Communications Biology
Authors: Elias Broman et al.
DOI: 10.1038/s42003-020-0822-7
Fishing trawlers could harm water quality by disrupting seafloor microbes
Source: Science
Is there a technological solution to aquatic dead zones?
"Could pumping oxygen-rich surface water into the depths of lakes, estuaries, and coastal ocean waters help ameliorate dangerous dead zones? New work says yes, although they caution that further research would be needed to understand any possible side effects before implementing such an approach. [...]"
Source: Science Daily
Understanding Long Island Sound's 'dead zones'
"For the past 25 years, the Environmental Protection Agency and the Connecticut Department of Energy and Environmental Protection have been diligently collecting water samples each month in Long Island Sound (LIS). Recently, the data have been compiled and analyzed, by UConn associate professors of Marine Science Penny Vlahos and Michael Whitney, and other team members, who have begun the task of digging into the data to better understand the biogeochemistry of the Sound. Part of the analysis, called "Nitrogen Budgets for LIS," has been published in the journal Estuarine, Coastal and Shelf Science. [...]"
Source: Phys.org
Anaerobic Activity Is a Big Contributor in Marine “Dead Zones”
Climate models that do not account for anaerobic microbial activity may underestimate future expansion of oxygen-depleted waters.
"Certain parts of Earth’s oceans are so oxygen depleted that they can hardly sustain life. Climate models predict that these “dead zones” will expand as global warming progresses, affecting ecosystems, fisheries, and the climate itself. Now Lengger et al. provide new evidence that such predictions do not adequately account for the activity of anaerobic microbes that consume inorganic carbon within dead zones. [...]"
Source: EOS.org
Warming climate will impact dead zones in Chesapeake Bay
"In recent years, scientists have projected increasingly large summer dead zones in the Chesapeake Bay, areas where there is little or no oxygen for living things like crabs and fish to thrive, even as long-term efforts to reduce nutrient pollution continue. Researchers factored in local impacts of climate change to make projections of what the oxygen content of the Chesapeake Bay will look like in the future. [...]"
Source: Science Daily
Large ‘dead zone’ measured in Gulf of Mexico
Hurricane Barry dampens initial size predictions
"This year’s Gulf of Mexico “dead zone”— an area of low oxygen that can kill fish and marine life — is approximately 6,952 square miles, according to NOAA-supported scientists. The measured size of the dead zone, also called the hypoxic zone, is the 8th largest in the 33-year record and exceeds the 5,770-square-mile average from the past five years. [...]"
Source: NOAA
Massive 8,000-mile 'dead zone' could be one of the gulf's largest
"JUST OFF THE coast of Louisiana and Texas where the Mississippi River empties, the ocean is dying. The cyclical event known as the dead zone occurs every year, but scientists predict that this year's could be one of the largest in recorded history. Annual spring rains wash the nutrients used in fertilizers and sewage into the Mississippi. That fresh water, less dense than ocean water, sits on top of the ocean, preventing oxygen from mixing through the water column. Eventually those freshwater nutrients can spur a burst of algal growth, which consumes oxygen as the plants decompose. [...]"
Source: National Geographic
NOAA forecasts very large ‘dead zone’ for Gulf of Mexico
"NOAA scientists are forecasting this summer’s Gulf of Mexico hypoxic zone or ‘dead zone’ – an area of low to no oxygen that can kill fish and other marine life – to be approximately 7,829 square miles, or roughly the size of Massachusetts. The annual prediction is based on U.S. Geological Survey river flow and nutrient data. [...]"
Source: NOAA
Flooding Makes Big 'Dead Zone' Off Louisiana Coast Likely
"The year's widespread flooding has made it likely that a big, oxygen-starved "dead zone" off Louisiana's coast will form this summer, the head of the National Centers for Coastal Ocean Science said Thursday. Preliminary computer model runs "indicate a large to very large year," for the area where there's too little oxygen to support marine life, Steven Thur told the Mississippi River/Gulf of Mexico Hypoxia Task Force during a meeting livestreamed from Baton Rouge. [...]"
Source: The New York Times
Sri Lanka's marine protection agency calls for tougher laws against ocean pollution
General Manager of the Marine Environment Protection Authority, Dr. P.B. Teney told Xinhua that authorities had discovered the formation of a dead zone in the Bay of Bengal which had spread across a 6000 square kilometer area and was 100 meters to 400 meters in depth. [...]"
Source: XinhuaNet
'Dead zone' volume more important than area to fish, fisheries
Dubravko Justic, the Texaco Distinguished Professor in the LSU Department of Oceanography & Coastal Sciences, and Research Associate Lixia Wang recently co-authored a study suggesting that measuring the volume rather than the area of the Gulf of Mexico's dead zone, is more appropriate for monitoring its effects on marine organisms.
"The dead zone, a hypoxic zone, is a region of low oxygen that results from runoff of high nutrients, such as nitrogen and phosphorus, often found in fertilizer, flowing from the Mississippi River into the coastal ocean. It is the largest recurring hypoxic zone in the U.S., occurring most summers, and is located off the coast of Louisiana. This nutrient pollution, coupled with other factors, is believed to have a negative impact on fisheries because it depletes the oxygen required to support most marine life in bottom and near-bottom waters. [...]"
Source: Science Daily
Tool to Capture Marine Biological Activity Gets Coastal Upgrade
"Upwelling hinders an efficient method to estimate a key measure of biological productivity in coastal waters, but accounting for surface temperatures could boost accuracy.
Although coastal waters make up only about 10% of the surface area of the ocean, they harbor most of its life. Measuring biological activity in these regions can reveal their impact on fisheries, low-oxygen dead zones, and the global carbon cycle, but coastal zones remain understudied. Now new research by Teeter et al. suggests how to improve the accuracy of a method that uses oxygen and argon measurements to quickly estimate marine biological activity. [...]"
Source: EOS
Characterization of “dead-zone” eddies in the eastern tropical North Atlantic (2016)
Abstract.
"Localized open-ocean low-oxygen “dead zones” in the eastern tropical North Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic mode-water eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats reveals that “dead-zone” eddies are found in surprisingly high numbers and in a large area from about 4 to 22°N, from the shelf at the eastern boundary to 38°W. [...]"
Source: Biogeosciences
Authors: Florian Schütte et al.
DOI: 10.5194/bg-13-5865-2016
Expanding 'dead zone' in Arabian Sea raises climate change fears
In the waters of the Arabian Sea, a vast "dead zone" the size of Scotland is expanding and scientists say climate change may be to blame. In his lab in Abu Dhabi, Zouhair Lachkar is labouring over a colourful computer model of the Gulf of Oman, showing changing temperatures, sea levels and oxygen concentrations.His models and new research unveiled earlier this year show a worrying trend.Dead zones are areas of the sea where the lack of oxygen makes it difficult for fish to survive and the one in the Arabian Sea is "is the most intense in the world," says Lachkar, a senior scientist at NYU Abu Dhabi in the capital of the United Arab Emirates.
Source: phys.org
Chesapeake Bay: Larger-than-average summer 'dead zone' forecast for 2018 after wet spring
This summer's Chesapeake Bay hypoxic or dead zone, an area of low to no oxygen that can kill fish and other aquatic life, is expected to be about 1.9 cubic miles (7.9 cubic kilometers), according to the forecast released today by the two universities. [...]"
Source: Phys.org
Gulf of Mexico 'dead zone' forecasted to exceed the size of Connecticut
"Scientists have predicted the dead zone, or area with little to no oxygen in the northern Gulf of Mexico, will become larger than the state of Connecticut by the end of July. The dead zone will cover about 6,620 square miles of the bottom of the continental shelf off Louisiana and Texas. While there are more than 500 dead zones around the world, the northern Gulf of Mexico dead zone is the second largest human-caused coastal hypoxic area in the world."
Source: Phys.org
Physical controls on oxygen distribution and denitrification potential in the north west Arabian Sea
Abstract.
"At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6‐12 to < 2 μmol kg‐1) not represented in climatologies. [...]"
Source: Grophysical Research Letters
Authors: B. Y. Queste et al.
DOI: 10.1029/2017GL076666
Growing 'dead zone' confirmed by underwater robots in the Gulf of Oman
"New research reveals a growing 'dead zone' in the Gulf of Oman. Little data has been collected in the area for almost 50 years because of piracy and geopolitical tensions. The area devoid of oxygen was confirmed by underwater robots. Reasearchers found an area larger than Scotland with almost no oxygen left. The environmental disaster is worse than expected with dire consequences for fish and marine plants, plus humans who rely on the oceans for food and employment. "
Source: Science Daily
Nancy Rabalais - The "dead zone" of the Gulf of Mexico
"Ocean expert Nancy Rabalais tracks the ominously named "dead zone" in the Gulf of Mexico -- where there isn't enough oxygen in the water to support life. The Gulf has the second largest dead zone in the world; on top of killing fish and crustaceans, it's also killing fisheries in these waters. Rabalais tells us about what's causing it -- and how we can reverse its harmful effects and restore one of America's natural treasures."
Gulf of Mexico dead zone not expected to shrink anytime soon
The results, which appear in Science, suggest that policy goals for reducing the size of the northern Gulf of Mexico's dead zone may be unrealistic, and that major changes in agricultural and river management practices may be necessary to achieve the desired improvements in water quality.
The transport of large quantities of nitrogen from rivers and streams across the North American corn belt has been linked to the development of a large dead zone in the northern Gulf of Mexico, where massive algal blooms lead to oxygen depletion, making it difficult for marine life to survive.
"Despite the investment of large amounts of money in recent years to improve water quality, the area of last year's dead zone was more than 22,000 km2—about the size of the state of New Jersey," said Kimberly Van Meter, lead author of the paper and a postdoctoral fellow in the Department of Earth and Environmental Sciences at Waterloo. [...]"
Dealing with Dead Zones: Hypoxia in the Ocean
When water runs off of farmland and urban centers and flows into our streams and rivers, it is often chock-full of fertilizers and other nutrients. These massive loads of nutrients eventually end up in our coastal ocean, fueling a chain of events that can lead to hypoxic "dead zones" — areas along the sea floor where oxygen is so low it can no longer sustain marine life. In this episode, we're joined by NOAA scientist Alan Lewitus to explore why dead zones form, how the problem of hypoxia is growing worse, and what we're doing about it.
Source: National Oceanic and Atmospheric Administration (NOAA)
Author: Troy Kitch
Read the full article here.
Earth’s Oceans Suffocate as Climate Change and Nutrient Loading Create “Dead Zones”
"A new research study from a Global Ocean Oxygen Network (GO2NE) team of scientists reveals that the number of low- and zero oxygen sites in the world’s oceans have increased dramatically in the past 50 years. The Intergovernmental Oceanographic Commission of the United Nations created the GO2NE working group to provide a multidisciplinary, global view of deoxygenation, with the end goal of advising policymakers on preserving marine resources by countering low oxygen. [...]"
Source: environmental monitor
Author: Karla Lant
Gulf of Mexico Battles Expanding Dead Zone in Louisiana
The Gulf of Mexico meets the shorelines of Alabama, Louisiana, Mississippi, Texas and western Florida and is home to a large fishing industry. Several rivers from the Midwestern watershed flow south into the Gulf, carrying with them sediment, nutrient loads, and pollution from fossil fuel burning and wastewater systems.
The problem isn’t new, but it is expanding. "
Author: Mindy Cooper
Source: Environmental Monitor
A Giant Blob of Floodwater From Harvey Is Still Moving Through the Gulf
"The rain began on August 25, and it would fall, remarkably, for four more days. We know now that Hurricane Harvey dumped as much as 60 inches of rain over parts of Texas. Twenty trillion gallons in all. The equivalent of the entire Chesapeake Bay. Enough to push the Earth’s crust down two centimeters. [...]
What oceanographers do know about the interface of freshwater and ocean comes from studying rivers that naturally empty into the sea. The key is density. Because freshwater lacks dissolved salt, it is less dense and floats atop seawater. It becomes a barrier between the air and the ocean water, which can have nasty consequences. “The freshwater sitting on the salty water cuts off the oxygen from the atmosphere getting into the ocean, and then you get the dead zone,” says Steve DiMarco [...]"
Source: The Atlantic
Chesapeake Bay dead zone this summer worst since 2014
In June, federal scientists predicted a bigger-than-average oxygen-deprived dead zone in the Chesapeake Bay this summer, and it turns out they were right.
Researchers with the Virginia Institute of Marine Science who study bay hypoxia announced Monday that the total amount of dead zones this summer was the worst since 2014, and a 10 percent increase over last year.
Source: Daily Press
Low Oxygen Dead Zones in the Pacific Ocean are Growing
"Every year, we see wildfires wreak havoc on large regions of the West United States, and each year scientists attempt to forecast exactly how bad the upcoming fire season is going to be by assessing things like weather, moisture levels, and a bevy of different factors. [...]"
Source: Mind Guild
Macroalgal Blooms on the Rise along the Coast of China
Abstract.
"A broad spectrum of events that come under the category of macroalgal blooms are recognized world-wide as a response to elevated levels of eutrophication in coastal areas. In the Yellow Sea of China, green tides have consecutively occurred 10 years, which is considered as the world’s largest Ulva blooms. However, in recently years, golden tides caused by Sargassum seaweed have also been on the rapid rise, resulting in dramatic damage to the environment and economy again. [...]"
Source: Oceanography & Fisheries
Authors: Jianheng Zhang, Yuanzi Huo and Peimin He
DOI: 10.19080/OFOAJ.2017.04.555646
Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico “Dead Zone”
Abstract.
"Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called “dead zones,” are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. [...]"
Source: mBio
Authors: J. Cameron Thrash et al.
DOI: 10.1128/mBio.01017-17
Meat industry blamed for largest-ever 'dead zone' in Gulf of Mexico
"The global meat industry, already implicated in driving global warming and deforestation, has now been blamed for fueling what is expected to be the worst “dead zone” on record in the Gulf of Mexico.
Toxins from manure and fertiliser pouring into waterways are exacerbating huge, harmful algal blooms that create oxygen-deprived stretches of the gulf, the Great Lakes and Chesapeake Bay, according to a new report by Mighty, an environmental group chaired by former congressman Henry Waxman. [...]"
Source: The Guardian
Gulf of Mexico ‘dead zone’ is the largest ever measured
"Scientists have determined this year’s Gulf of Mexico “dead zone,” an area of low oxygen that can kill fish and marine life, is 8,776 square miles, an area about the size of New Jersey. It is the largest measured since dead zone mapping began there in 1985."
Source: National Oceanic and Atmospheric Administration (NOAA)
Massive Bloom Of Pickle-Shaped Sea Creatures Fills The Pacific
"Millions of tubular sea creatures called pyrosomes have taken over the Pacific Ocean in an unprecedented bloom that has scientists baffled.
These bumpy, translucent organisms look like sea cucumbers that range in size from six inches to more than two feet long. But they’re actually made up of hundreds of tiny animals knit together with tissue into a filter-feeding cylinder. [...]
No one knows what the effects of the bloom will be, but scientists worry that if all the creatures die off at once they could sink to the seafloor and suck up all the oxygen as they’re decomposing, creating a dead zone for marine life."
Source: OPB/EarthFix
NOAA, USGS and partners predict third largest Gulf of Mexico summer ‘dead zone’ ever
"Larger-than-average low and no oxygen area may affect the region’s shrimp fisheries
Federal scientists forecast that this summer’s Gulf of Mexico dead zone – an area of low to no oxygen that can kill fish and other marine life – will be approximately 8,185 square miles, or about the size of New Jersey.
This would be the third largest dead zone recorded since monitoring began 32 years ago – the average Gulf dead zone since then has been 5,309 square miles.
The Gulf’s hypoxic or low-oxygen zones are caused by excess nutrient pollution, primarily from human activities such as agriculture and wastewater treatment. The excess nutrients stimulate an overgrowth of algae, which then sinks and decomposes in the water. The resulting low oxygen levels are insufficient to support most marine life and habitats in near-bottom waters, threatening the Gulf’s fisheries. [...]"
Source: National Oceanic and Atmospheric Administration (NOAA)
NOAA, USGS and partners predict larger summer ‘dead zone’ for the Chesapeake Bay
"Scientists expect this year’s summer Chesapeake Bay hypoxic or “dead zone” — an area of low to no oxygen that can kill fish and aquatic life — will be larger than average, approximately 1.89 cubic miles, or nearly the volume of 3.2 million Olympic-size swimming pools.
Measurements for the Bay’s dead zone go back to 1950, and the 30-year mean maximum dead zone volume is 1.74 cubic miles. [...]"
Source: U.S. Geological Survey
Stormy waters: the salmon farmer trying to limit fishing and save the ocean
In the 1980s, protests over the proposed Franklin River hydroelectric dam threw the Apple Isle’s conservation plight onto the national stage. This time, it is the state’s salmon farming industry that is under a cloud. The relatively young industry is worth over $700m a year and now outpaces all other farming activities on the island but environmental campaigners are worried about its impact on the region’s pristine waters. [...]"
Source: The Guardian
Spreading Dead Zones and Consequences for Marine Ecosystems
Abstract.
"Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning. The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels. Enhanced primary production results in an accumulation of particulate organic matter, which encourages microbial activity and the consumption of dissolved oxygen in bottom waters. Dead zones have now been reported from more than 400 systems, affecting a total area of more than 245,000 square kilometers, and are probably a key stressor on marine ecosystems."
Source: Science Magazine (2008)
Authors: Robert J. Diaz, Rutger Rosenberg
DOI: 10.1126/science.1156401
Big Storms Pump Mediterranean Water Far into the Black Sea
"For the first time, scientists provide a sea-wide view of what happens to Mediterranean waters that flow into the Black Sea through the Bosporus Strait.
Below a depth of about 150 meters, the Black Sea is devoid of oxygen. Only certain microbes can survive in this “dead zone,” which reaches depths of over 2000 meters. Warm, salty water flowing from the Mediterranean Sea into the Black Sea ventilates the middepth water column of the sea, trapping anoxic water below and maintaining the sea’s distinctive structure. However, the precise fate of inflowing Mediterranean waters has remained something of a mystery to scientists. [...]"
Source: EOS
Author: Sarah Stanley
Tropical dead zones and mass mortalities on coral reefs
Description
"Oxygen-starved coastal waters are rapidly increasing in prevalence worldwide. However, little is known about the impacts of these “dead zones” in tropical ecosystems or their potential threat to coral reefs. We document the deleterious effects of such an anoxic event on coral habitat and biodiversity, and show that the risk of dead-zone events to reefs worldwide likely has been seriously underestimated. Awareness of, and research on, reef hypoxia is needed to address the threat posed by dead zones to coral reefs."
Source: Proceedings of the National Academy of Sciences of the United Stated of America (PNAS)
Authors: Andrew H. Altieri et al.
DOI: 10.1073/pnas.1621517114
NCCOS: Price of Shrimp Impacted by Gulf of Mexico “Dead Zone”
The low oxygen conditions slow shrimp growth, leading to fewer and more expensive large shrimp.
The Guardian: Bay of Bengal: depleted fish stocks and huge dead zone signal tipping point
"Long treated as a bottomless resource pit, over-exploitation of the ocean, pollution and rising sea levels are having a catastrophic impact on life in the bay."
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.