News

Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

Abstract.

"The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. [...]"

Source: Nature Communications
Authors: Sebastiaan van de Velde et al.
DOI: 10.1038/s41467-018-04973-4

Read the full article here.


Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition

Abstract.

"The late Ediacaran to early Cambrian interval witnessed extraordinary radiations of metazoan life. The role of the physical environment in this biological revolution, such as changes to oxygen levels and nutrient availability, has been the focus of longstanding debate. Seemingly contradictory data from geochemical redox proxies help to fuel this controversy. As an essential nutrient, nitrogen can help to resolve this impasse by establishing linkages between nutrient supply, ocean redox, and biological changes. [...]"

Source: Nature Communications
Authors: Dan Wang et al.
DOI: 10.1038/s41467-018-04980-5

Read the full article here.


Oxygen minimum zones in the early Cambrian ocean

Abstract.

"The relationship between the evolution of early animal communities and oceanic oxygen levels remains unclear. In particular, uncertainty persists in reconstructions of redox conditions during the pivotal early Cambrian (541-510 million years ago, Ma), where conflicting datasets from deeper marine settings suggest either ocean anoxia or fully oxygenated conditions. By coupling geochemical palaeoredox proxies with a record of organic-walled fossils from exceptionally well-defined successions of the early Cambrian Baltic Basin, we provide evidence for the early establishment of modern-type oxygen minimum zones (OMZs). [...]"

Source: Geochemical Perspectives Letters 
Authors: R. Guilbaud et al.
DOI: 10.7185/geochemlet.1806

Read the full article here.


Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

Abstract.

"The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. [...]"

Source: Nature Communications
Authors: Sebastiaan van de Velde et al.
DOI: 10.1038/s41467-018-04973-4

Read the full article here.


Extensive marine anoxia during the terminal Ediacaran Period

Abstract.

"The terminal Ediacaran Period witnessed the decline of the Ediacara biota (which may have included many stem-group animals). To test whether oceanic anoxia might have played a role in this evolutionary event, we measured U isotope compositions (δ238U) in sedimentary carbonates from the Dengying Formation of South China to obtain new constraints on the extent of global redox change during the terminal Ediacaran. [...]"

Source: Science Advances
Authors: Feifei Zhang et al.
DOI: 10.1126/sciadv.aan8983

Read the full article here.


Marine redox fluctuation as a potential trigger for the Cambrian explosion

Abstract.

The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. [...]"

Source: Geology
Authors: Guang-Yi Wei et al.
DOI: 10.1130/G40150.1

Read the full article here.


Climate and marine biogeochemistry during the Holocene from transient model simulations

Abstract.

"Climate and marine biogeochemistry changes over the Holocene are investigated based on transient global climate and biogeochemistry model simulations over the last 9500 years. The simulations are forced by accelerated and non-accelerated orbital parameters, respectively, and atmospheric pCO2, CH4, and N2O. The analysis focusses on key climatic parameters of relevance to the marine biogeochemistry, and on the physical and biogeochemical processes that drive atmosphere–ocean carbon fluxes and changes in the oxygen minimum zones (OMZs). [...]"

Source: Biogeosciences
Authors: Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
DOI: 10.5194/bg-15-3243-2018

Read the full article here.


UNM scientists find widespread ocean anoxia as cause for past mass extinction

"New research sheds light on first of five major mass extinctions

For decades, scientists have conducted research centered around the five major mass extinctions that have shaped the world we live in. The extinctions date back more than 450 million years with the Late Ordovician Mass Extinction to the deadliest extinction, the Late Permian extinction 250 million years ago that wiped out over 90 percent of species. [...]"

Source: EurekAlert!

Read the full article here.


Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification

Abstract.

"The Ediacaran–Cambrian transition is a critical period in Earth history, during which both marine environment and life experienced drastic changes. It was suggested that pervasive oxygenation and associated chemical changes in the ocean have potentially triggered the rapid diversification of early Cambrian metazoans. The timing and process of ocean oxygenation, however, have not been well constrained. [...]"

Source: Palaeogeography, Palaeoclimatology, Palaeoecology
Authors: Xiangkuan Zhao et al.
DOI: 10.1016/j.palaeo.2018.05.009

Read the full article here.


Coupling of oceanic carbon and nitrogen facilitates spatially resolved quantitative reconstruction of nitrate inventories

Abstract.

"Anthropogenic impacts are perturbing the global nitrogen cycle via warming effects and pollutant sources such as chemical fertilizers and burning of fossil fuels. Understanding controls on past nitrogen inventories might improve predictions for future global biogeochemical cycling. Here we show the quantitative reconstruction of deglacial bottom water nitrate concentrations from intermediate depths of the Peruvian upwelling region, using foraminiferal pore density. [...]"

Source: Nature Communications
Authors: Nicolaas Glock et al.
DOI: 10.1038/s41467-018-03647-5

Read the full article here.


Showing 1 - 10 of 30 results.
Items per Page 10
of 3