News

Observing the Global Ocean with Biogeochemical-Argo

Abstract.

"Biogeochemical-Argo (BGC-Argo) is a network of profiling floats carrying sensors that enable observation of as many as six essential biogeochemical and bio-optical variables: oxygen, nitrate, pH, chlorophyll a, suspended particles, and downwelling irradiance. This sensor network represents today's most promising strategy for collecting temporally and vertically resolved observations of biogeochemical properties throughout the ocean. All data are freely available within 24 hours of transmission. These data fill large gaps in ocean-observing systems and support three ambitions: gaining a better understanding of biogeochemical processes (e.g., the biological[...]"

 

Source: Annual Review of Marine Science
Authors: Hervé Claustre et al.
DOI: https://doi.org/10.1146/annurev-marine-010419-010956

Read the full article here.

 

 


Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks

Abstract.

"Oceanic anoxic events (OAEs) document major perturbations of the global carbon cycle with repercussions for the Earth's climate and ocean circulation that are relevant to understanding future climate trends. Here, we compare the onset and development of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). OAE1a and OAE2 exhibit remarkable similarities in the evolution of their carbon isotope (δ13C) records, with long-lasting negative excursions preceding the onset of the main positive excursions, supporting the view that both OAEs were triggered by massive emissions of volcanic CO2 into the atmosphere. However, there are substantial differences, notably in the durations of individual phases within the δ13C positive excursions of both OAEs. [...]"

Source: Climate of the Past
Authors: Sebastian Beil et al.
DOI: 10.5194/cp-16-757-2020

Read the full article here.


Our Vanishing World: Oceans

"As the human onslaught against life on Earth accelerates, no part of the biosphere is left pristine. The simple act of consuming more than we actually need drives the world’s governments and corporations to endlessly destroy more and more of the Earth to extract the resources necessary to satisfy our insatiable desires. In fact, an initiative of the World Economic Forum has just reported that ‘For the first time in history, more than 100 billion tonnes of materials are entering the global economy every year’ – see ‘The Circularity Gap Report 2020’– which means that, on average, every person on Earth uses more than 13 tonnes of materials each year extracted from the Earth. [...]"

Source: GlobalReasearch

Read the full article here.


UK's lost sea meadows to be resurrected in climate fight

First seagrass restoration in Britain will capture carbon rapidly and offer habitat for lost marine life

 

“We think this whole bay was once carpeted with seagrass,” says Evie Furness, waving across the sparkling, sunlit waters of Dale Bay in Pembrokeshire, Wales. The underwater meadow is long gone though, a victim of past pollution and shipping. So from a boat half a mile from shore, Furness is feeding a long rope into the water, which carries a little hessian bag of seagrass seeds every metre. “We’ve passed the 800,000 seed mark now,” she says. [...]"

Source: The Guardian

Rad the full article here.


Multi-agency report highlights increasing signs and impacts of climate change in atmosphere, land and oceans

"New York / Geneva, 10 March 2020 - The tell-tale physical signs of climate change such as increasing land and ocean heat, accelerating sea level rise and melting ice are highlighted in a new report compiled by the World Meteorological Organization and an extensive network of partners. It documents impacts of weather and climate events on socio-economic development, human health, migration and displacement, food security and land and marine ecosystems. [...]"

Source: World Meteorological Organization (WMO)

Read the full article here.


Even fish at the bottom of the ocean can’t escape climate change

"The fish that live at the bottom of the sea are a hardy bunch. They’re adapted to handle crushing pressure, little to no sunlight, and a meager supply of food. But these otherwise gritty fish are also very sensitive to changes in the climate of the water around them, a new study suggests.

Scientists surveyed different patches of seafloor in the Gulf of California and saw that variations in temperature and oxygen levels had a huge impact on whether the fish community was thriving or sparse. In particular, the researchers found that one specific combination—warmer waters mixed with low oxygen levels—didn’t bode well for deep sea fish. This means that these creatures are likely to be vulnerable to the impacts of climate change, the researchers reported March 5 in Marine Ecology Progress Series. [...]"

Source: Popular Science
 

Read the full article here.


Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate

Abstract.

"The Southern Ocean is a critical component of the global climate system and an important ecoregion that contains a diverse range of interdependent flora and fauna. It also hosts numerous fronts: sharp boundaries between waters with different characteristics. As they strongly influence exchanges between the ocean, atmosphere and cryosphere, fronts are of fundamental importance to the climate system. However, rapid advances in physical oceanography over the past 20 years have challenged previous definitions of fronts and their response to anthropogenic climate change. [...]"

Source: Nature Climate Change
Authors: Christopher C. Chapman et al.
DOI: 10.1038/s41558-020-0705-4

Read the full article here.


Trends and decadal oscillations of oxygen and nutrients at 50 to 300 m depth in the equatorial and North Pacific

Abstract.

"A strong oxygen-deficient layer is located in the upper layers of the tropical Pacific Ocean and deeper in the North Pacific. Processes related to climate change (upper-ocean warming, reduced ventilation) are expected to change ocean oxygen and nutrient inventories. In most ocean basins, a decrease in oxygen (“deoxygenation”) and an increase in nutrients have been observed in subsurface layers. Deoxygenation trends are not linear and there could be multiple influences on oxygen and nutrient trends and variability. [...]"

Source: Biogeosciences
Authors: Lothar Stramma et al.
DOI: 10.5194/bg-17-813-2020

Read the full article here.


Preparatory Meeting Stresses 2020 as a New Chapter of Ocean Action

"Participants at the 2020 UN Ocean Conference Preparatory Meeting highlighted the importance of a healthy ocean in implementing and achieving the SDGs and stressed that 2020 must be a year of concrete action for the ocean. The 2020 Ocean Conference is one of the first milestones of the UN Secretary-General’s Decade of Action for the SDGs and is expected to provide inputs into the High-level Political Forum on Sustainable Development (HLPF) and the UN Decade of Ocean Science for Sustainable Development. [...]"

Read the full article here.


No “Ocean Super-Year” without Marine Regions

"This new decade starts at a critical moment for the future of the Ocean. There is strong agreement among experts that decisions taken in the next ten years will be critical for the future of the Ocean. The current ecological crisis demands a radical shift in the way we treat the marine environment, its precious wildlife, and its invaluable natural resources. We are witnessing continued loss of biodiversity, overfishing, habitat destruction, pollution, and many other serious impacts from human activities – all compounded by climate change, Ocean deoxygenation and acidification. [...]"

Source: International Institute for Sustainable Development

Read the full article here.


Showing 1 - 10 of 90 results.
Items per Page 10
of 9