News

Scientists, students to conduct first live, interactive public broadcasts from arctic ocean

"A team of natural and social scientists, supported by 25 post-secondary students from the U.S. and Canada, will study vital signs of a rapidly changing Arctic Ocean this summer, and offer the public a chance to share the experience in real time.

The innovative, 18-day Northwest Passage Project research expedition will depart on July 18 from the U.S. Air Base in Thule, Greenland, aboard the Swedish Icebreaker Oden, returning to Thule August 4 after a 2,000 nautical mile voyage through the Northwest Passage [...]"

Source: EurekAlert!

Read the full article here


Observing an anticyclonic eddy in the South China Sea using multiple underwater gliders

Abstract.

"Mesoscale eddies, as a considerable contributor to the transport of ocean heat, dissolved oxygen and other biochemical tracers, have an important influence on the distribution of marine resources and global climate change. The purpose of this research is to capture the high variability of an anticyclonic eddy in South China Sea to observe its thermohaline vertical structure in different transections. [...]"

Source: OCEANS 2018 MTS/IEEE Charleston
Authors: Shufeng Li et al.
DOI: 10.1109/OCEANS.2018.8604623

Read the full article here 


The far-future ocean: Warm yet oxygen-rich

"The oceans are losing oxygen. Numerous studies based on direct measurements in recent years have shown this. Since water can dissolve less gas as temperatures rise, these results were not surprising. In addition to global warming, factors such as eutrophication of the coastal seas also contribute to the ongoing deoxygenation. [...]"

Source: Phys.org

Read the full article here.


Loss of fixed nitrogen causes net oxygen gain in a warmer future ocean

Abstract.

"Oceanic anoxic events have been associated with warm climates in Earth history, and there are concerns that current ocean deoxygenation may eventually lead to anoxia. Here we show results of a multi-millennial global-warming simulation that reveal, after a transitory deoxygenation, a marine oxygen inventory 6% higher than preindustrial despite an average 3 °C ocean warming. [...]"

Source: Nature Communications
Authors: Andreas Oschlies et al.
DOI: 10.1038/s41467-019-10813-w

Read the full article here.


Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size

Abstract.

"It has been suggested that giant Antarctic marine invertebrates will be particularly vulnerable to declining O2 levels as our ocean warms in line with current climate change predictions. Our study provides some support for this oxygen limitation hypothesis, with larger body sizes being generally more sensitive to O2 reductions than smaller body sizes. [...]"

Source: Philosophical Transactions of the Royal Society B
Authors: John I. Spicer  and Simon A. Morley
DOI: 10.1098/rstb.2019.0034

Read the full article here.


The complex fate of Antarctic species in the face of a changing climate

"Researchers have presented support for the theory that marine invertebrates with larger body size are generally more sensitive to reductions in oxygen than smaller animals, and so will be more sensitive to future global climate change. However, evolutionary innovation can to some extent offset any respiratory disadvantages of large body size. [...]"

Source: Science Daily / University of Plymouth

Read the full article here.


Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE

Abstract.

"Marine deoxygenation and anthropogenic ocean warming are observed and projected to intensify in the future. These changes potentially impact the functions and services of marine ecosystems. A key question is whether marine ecosystems are already or will soon be exposed to environmental conditions not experienced during the last millennium. Using a forced simulation with the Community Earth System Model (CESM) over the period 850 to 2100, we find that anthropogenic deoxygenation and warming in the thermocline exceeded natural variability in, respectively, 60 % and 90 % of total ocean area. [...]"

Source: Biogeosciences
Authors: Angélique Hameau, Juliette Mignot Fortunat Joos
DOI: 10.5194/bg-16-1755-2019

Read the full article here.


Multi-faceted particle pumps drive carbon sequestration in the ocean

Abstract.

"The ocean’s ability to sequester carbon away from the atmosphere exerts an important control on global climate. The biological pump drives carbon storage in the deep ocean and is thought to function via gravitational settling of organic particles from surface waters. However, the settling flux alone is often insufficient to balance mesopelagic carbon budgets or to meet the demands of subsurface biota. [...]"

Source: Nature
Authors: Philip W. Boyd et al.
DOI: 10.1038/s41586-019-1098-2

Read the full article here.


Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis

Abstract.

"The Dungeness crab is an economically and ecologically important species distributed along the North American Pacific coast. To predict how Dungeness crab may physiologically respond to future global ocean change on a molecular level, we performed untargeted metabolomic approaches on individual Dungeness crab juveniles reared in treatments that mimicked current and projected future pH and dissolved oxygen conditions. We found 94 metabolites and 127 lipids responded in a condition-specific manner, with a greater number of known compounds more strongly responding to low oxygen than low pH exposure. [...]"

Source: bioRxiv
Authors: Shelly A. Trigg et al.
DOI: 10.1101/574798

Read the full article here.


Much of the surface ocean will shift in color by end of 21st century

"Climate change is causing significant changes to phytoplankton in the world's oceans, and a new MIT study finds that over the coming decades these changes will affect the ocean's color, intensifying its blue regions and its green ones. Satellites should detect these changes in hue, providing early warning of wide-scale changes to marine ecosystems. [...]"

Source: ScienceDaily

Read the full article here.


Showing 1 - 10 of 59 results.
Items per Page 10
of 6