News

Gulf Dead Zone Looms Large in 2019

"In 2019, predictions indicate that the Gulf of Mexico will retain the dubious distinction of having the second-largest low-oxygen dead zone on Earth (the Baltic Sea remains firmly in first place). By the end of the summer, the hypoxic region on the seafloor at the mouth of the Mississippi River is expected to occupy over 22,000 square kilometers—an area the size of the state of Massachusetts. [...]

Source: Earth & Space Science News
Author: Mary Caperton Morton
DOI: 10.1029/2019EO128019

Read the full article here.


The far-future ocean: Warm yet oxygen-rich

"The oceans are losing oxygen. Numerous studies based on direct measurements in recent years have shown this. Since water can dissolve less gas as temperatures rise, these results were not surprising. In addition to global warming, factors such as eutrophication of the coastal seas also contribute to the ongoing deoxygenation. [...]"

Source: Phys.org

Read the full article here.


Loss of fixed nitrogen causes net oxygen gain in a warmer future ocean

Abstract.

"Oceanic anoxic events have been associated with warm climates in Earth history, and there are concerns that current ocean deoxygenation may eventually lead to anoxia. Here we show results of a multi-millennial global-warming simulation that reveal, after a transitory deoxygenation, a marine oxygen inventory 6% higher than preindustrial despite an average 3 °C ocean warming. [...]"

Source: Nature Communications
Authors: Andreas Oschlies et al.
DOI: 10.1038/s41467-019-10813-w

Read the full article here.


Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size

Abstract.

"It has been suggested that giant Antarctic marine invertebrates will be particularly vulnerable to declining O2 levels as our ocean warms in line with current climate change predictions. Our study provides some support for this oxygen limitation hypothesis, with larger body sizes being generally more sensitive to O2 reductions than smaller body sizes. [...]"

Source: Philosophical Transactions of the Royal Society B
Authors: John I. Spicer  and Simon A. Morley
DOI: 10.1098/rstb.2019.0034

Read the full article here.


The complex fate of Antarctic species in the face of a changing climate

"Researchers have presented support for the theory that marine invertebrates with larger body size are generally more sensitive to reductions in oxygen than smaller animals, and so will be more sensitive to future global climate change. However, evolutionary innovation can to some extent offset any respiratory disadvantages of large body size. [...]"

Source: Science Daily / University of Plymouth

Read the full article here.


Variations in ocean deoxygenation across Earth System Models: Isolating the role of parametrized lateral mixing

Abstract.

"Modern Earth System Models (ESMs) disagree on the impacts of anthropogenic global warming on the distribution of oxygen and associated low‐oxygen waters. A sensitivity study using the GFDL CM2Mc model points to the representation of lateral mesoscale eddy transport as a potentially important factor in such disagreement. Because mesoscale eddies are smaller than the spatial scale of ESM ocean grids, their impact must be parameterized using a lateral mixing coefficient AREDI. [...]"

Source: Global Biogeochemical Cycles
Authors: A. Bahl, A. Gnanadesikan and M.‐A. Pradal
DOI: 10.1029/2018GB006121

Read the full article here.


Vision is highly sensitive to oxygen availability in marine invertebrate larvae

Abstract.

"For many animals, evolution has selected for complex visual systems despite the high energetic demands associated with maintaining eyes and their processing structures. The metabolic demands of visual systems therefore make them highly sensitive to fluctuations in available oxygen. In the marine environment, oxygen changes over daily, seasonal, and inter-annual time scales and there are large gradients of oxygen with depth. [...]"

Source: Journal of Experimental Biology
Auhtors: Lillian R. McCormick, Lisa A. Levin and Nicholas W. Oesch
DOI: 10.1242/jeb.200899

Read the full article here.


Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE

Abstract.

"Marine deoxygenation and anthropogenic ocean warming are observed and projected to intensify in the future. These changes potentially impact the functions and services of marine ecosystems. A key question is whether marine ecosystems are already or will soon be exposed to environmental conditions not experienced during the last millennium. Using a forced simulation with the Community Earth System Model (CESM) over the period 850 to 2100, we find that anthropogenic deoxygenation and warming in the thermocline exceeded natural variability in, respectively, 60 % and 90 % of total ocean area. [...]"

Source: Biogeosciences
Authors: Angélique Hameau, Juliette Mignot Fortunat Joos
DOI: 10.5194/bg-16-1755-2019

Read the full article here.


Small zooplankton rings the alarm for oxygen loss in big oceans

"Hypoxia, a low level of oxygen that limits the physiological functions of animals, is a topic that fascinates many biologists. As climate change progresses, the frequency of hypoxic episodes in aquatic environments is increasing, putting fish species under stress and even reducing populations in some cases. But it is not only fish that suffer the ill effects of hypoxia. [...]"

Source: Journal of Experimental Biology
Author: Yangfan Zhang
DOI: 10.1242/jeb.199141

Read the full article here.


The influence of decadal oscillations on the oxygen and nutrient trends in the Pacific Ocean

Abstract.

"A strong oxygen deficient layer is located in the upper layer of the tropical Pacific Ocean and at deeper depths in the North Pacific. Processes related to climate change (upper ocean warming, reduced ventilation) are expected to change ocean oxygen and nutrient inventories. In most ocean basins, a decrease in oxygen (‘deoxygenation’) and an increase of nutrients has been observed in subsurface layers. Deoxygenation trends are not linear and there could be other influences on oxygen and nutrient trends and variability. Here oxygen and nutrient time series since 1950 in the Pacific Ocean were investigated at 50 to 300 m depth, as this layer provides critical pelagic habitat for biological communities. [...]"

Source: Biogeosciences
Authors: Lothar Stramma et al.
DOI: 10.5194/bg-2019-91

Read the full article here.


Showing 1 - 10 of 87 results.
Items per Page 10
of 9