News

Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone

Abstract.

"The availability of the micronutrient iron (Fe) in surface waters determines primary production, N2 fixation and microbial community structure in large parts of the world's ocean, and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling systems and the connected oxygen minimum zones (OMZs) are typically associated with elevated concentrations of redox-sensitive trace metals (e.g. Fe, manganese (Mn) and cobalt (Co)), with shelf sediments typically forming a key source. Over the last five decades, an expansion and intensification of OMZs has been observed and this trend is likely to proceed. [...]"

Source: Biogeosciences
Authors: Insa Rapp et al.
DOI: 10.5194/bg-2018-472

Read the full article here.


Why Is the Gulf of Maine Warming Faster Than 99% of the Ocean?

"The Gulf of Maine’s location at the meeting point of two major currents, as well as its shallow depth and shape, makes it especially susceptible to warming.


Late last month, four endangered sea turtles washed ashore in northern Cape Cod, marking an early onset to what has now become a yearly event: the sea turtle stranding season. These turtles—in last month’s case, Kemp’s ridley sea turtles—venture into the Gulf of Maine during warm months, but they can become hypothermic and slow moving when colder winter waters abruptly arrive, making it hard to escape. “They are enjoying the warm water, and then all of a sudden the cold comes, and they can’t get out fast enough,” said Andrew Pershing, an oceanographer at the Gulf of Maine Research Institute in Portland, Maine. [...]"

Source: eos.org

Read the full article here.


Volcanic eruptions once caused mass extinctions in the oceans – could climate change do the same?

"All animals, whether they live on land or in the water, require oxygen to breathe. But today the world’s oceans are losing oxygen, due to a combination of rising temperatures and changing ocean currents. Both factors are driven by human-induced climate change.

This process has the potential to disrupt marine food chains. We already know that large hypoxic, or low-oxygen, zones can be deadly. If hypoxia expands in both size and duration, it is possible to cause widespread extinction of marine life, which has happened previously in Earth’s history. [...]"

Source: TheConversation

Read the full article here.


[German] Dem Ozean geht die Luft aus

"In den tropischen und subtropischen Meeren existieren in mittleren Tiefen riesige sauerstoffarme Zonen. Im Zuge des Klimawandels dehnen sie sich immer stärker aus. Auch in Küstenregionen entstehen durch Stickstoffbelastung aus der Landwirtschaft lebensfeindliche Zonen ohne Sauerstoff – mit verheerenden Folgen für das marine Ökosystem [...]"

Source: Spektrum.de

Read the full article here.


[German] TV reports about ocean deoxygenation in the german media

The german Internet and TV channel HYPERRAUM.TV published two reports in collaboration with the SFB754 experts Martin Visbeck and Andreas Oschlies.

German speaking users may find the videos online by using one of the two links:

Report 1: Fische in Atemnot

Report 2: Sauerstoff-Transporte


Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings

Abstract.

"We explore centennial changes in tropical Pacific oxygen (O2) using numerical models to illustrate the dominant patterns and mechanisms under centennial climate change. Future projections from state‐of‐the‐art Earth System Models exhibit significant model to model differences, but decreased solubility and weakened ventilation together deplete thermocline O2 in middle to high latitudes. In contrast, the tropical thermocline O2undergoes much smaller changes or even a slight increase. [...]"

Source: Global Biogeochemical Cycles
Authors: Yohei Takano, Takamitsu Ito & Curtis Deutsch
DOI: 10.1029/2018GB005939

Read the full article here.


Drivers of oxygen consumption in the northern Gulf of Mexico hypoxic waters – A stable carbon isotope perspective

Abstract.

"We examined the stable carbon isotopic composition of remineralized organic carbon (δ13COCx) in the northern Gulf of Mexico (nGoM) using incubations (sediment and water) and a three end‐member mixing model. δ13COCx in incubating sediments was ‐18.1±1.3‰, and δ13COCx in incubating near‐surface and near‐bottom waters varied with salinity, ranging from ‐30.4‰ to ‐16.2‰ from brackish water to full strength Gulf water. The average δ13COCx was ‐18.6 ±1.8‰ at salinity >23. A three end‐member mixing model based on a multi‐year dataset collected in previous summer hypoxia cruises (2011, 2012, 2014, 2015 and 2016) suggested that δ13COCx in near‐bottom waters across the nGoM (5‐50 m) was ‐18.1±0.6‰. [...]" 

Source: Geophysical Reasearch Letters
Authors: Hongjie Wang et al.
DOI: 10.1029/2018GL078571

Read the full article here.


Shift in large-scale Atlantic circulation causes lower-oxygen water to invade Canada’s Gulf of St. Lawrence

"The Gulf of St. Lawrence has warmed and lost oxygen faster than almost anywhere else in the global oceans. The broad, biologically rich waterway in Eastern Canada drains North America’s Great Lakes and is popular with fishing boats, whales and tourists.

A new study led by the University of Washington looks at the causes of this rapid deoxygenation and links it to two of the ocean’s most powerful currents: the Gulf Stream and the Labrador Current. The study, published Sept. 17 in Nature Climate Change, explains how large-scale climate change already is causing oxygen levels to drop in the deeper parts of this waterway."

Source: University of Washington
Author: Hannah Hickey

Read the full article here.


Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic

Abstract.

"Global observations show that the ocean lost approximately 2% of its oxygen inventory over the past five decades, with important implications for marine ecosystems. The rate of change varies regionally, with northwest Atlantic coastal waters showing a long-term drop that vastly outpaces the global and North Atlantic basin mean deoxygenation rates. However, past work has been unable to differentiate the role of large-scale climate forcing from that of local processes. [...]"

Source: Nature Climate Change
Auhors: Mariona Claret et al.
DOI: 10.1038/s41558-018-0263-1

Read the full article here.


Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies

Abstract.

"Because of anthropogenic global warming, the world ocean is currently losing oxygen. This trend called ocean deoxygenation is particularly pronounced in low-latitude upwelling-related oxygen minimum zones (OMZs). In these areas, the temperature-related oxygen drawdown is additionally modulated by biogeochemical feedback mechanisms between sedimentary iron (Fe) and phosphorus release, water column nitrogen cycling and primary productivity. Similar feedbacks were likely active during past periods of global warming and oceandeoxygenation. However, their integrated role in amplifying or mitigating climate change-driven ocean anoxia has not been evaluated in a systematic fashion. [...]"

Source: Earth-Science Reviews
Author: Florian Scholz
DOI: 10.1016/j.earscirev.2018.08.002

Read the full article here.


Showing 1 - 10 of 63 results.
Items per Page 10
of 7