News

How ocean deoxygenation enters the global agenda

A Story of the Collaborative Research Centre "Climate-Biogeochemistry Interactions in the Tropical Ocean"

After 12 years of intensive research, the Collaborative Research Centre 754 "Climate-Biogeochemical Interactions in the Tropical Ocean" ended in winter 2019 with a final symposium in Heiligenhafen.

More than 100 scientists involved in the large-scale project over its entire running time were able to gain numerous new insights into the processes of nutrient cycling, the interaction between ocean and atmosphere and the ecosystems in the tropical oceans. Above all, however, they drew attention to a phenomenon that affects the entire ocean: global oxygen loss and the spread of oxygen minimum zones in the ocean. With this video, the SFB 754 now draws a conclusion and at the same time points out the new research tasks that have resulted from its work. These include improved ocean observation and the question of how to prevent further oxygen loss.

For more information please look at www.sfb754.de

For a german version of the video please follow this link.


Observing phytoplankton via satellite

"Thanks to a new algorithm, researchers can now use satellite data to determine in which parts of the ocean certain types of phytoplankton are dominant. In addition, they can identify toxic algal blooms and assess the effects of global warming on marine plankton, allowing them to draw conclusions regarding water quality and the ramifications for the fishing industry. [...]"

Source: Science Daily

Read the full article here.


Sweden becomes latest nation to join Global Ocean Alliance

"Sweden has become the newest member of the UK’s Global Ocean Alliance, which looks to help drive urgent action towards the 30by30 target, which would safeguard 30% of the ocean by 2030 and so helping to protect marine wildlife.

“Sweden together with Fiji, hosted the first UN ocean conference in 2017, and we firmly believe we need more international cooperation and substantially increased ambitions to help our ocean survive under the increasing pressures of overfishing, pollution and climate change,” said Swedish Minister for Environment and Climate, Isabella Lövin. [...]"

Source: Oceanographic

Read the full article here.


Application of geoacoustic inference to assess the diurnal effects of photosynthetic activity in a seagrass meadow

Abstract.

"Seagrasses provide a multitude of ecosystem services: they alter water flow, cycle nutrients, stabilize sediments, support the food web structure, and provide a critical habitat for many animals. However, due to threats to seagrass meadows and their associated ecosystems, these habitats are declining globally. Acoustical methods can be a powerful remote sensing tool to efficiently monitor seagrass meadows, alleviating the problem of space and time aliasing associated with traditional spot measurements. [...]"

Source: Earth and Space Science Open Archive
Authors: Megan Ballard et al.
DOI: 10.1002/essoar.10502265.1

Read the full article here.


Tracer Versus Observationally-Derived Constraints on Ocean Mixing Parameters in an Adjoint-Based Data Assimilation Framework

Abstract.

"This study investigates the possibility of using an ocean parameter and state estimation framework to improve knowledge of mixing parameters in the global ocean. Multiple sources of information about two ocean mixing parameters, the diapycnal diffusivity and the Redi coefficient, are considered. It is first established that diapycnal diffusivities derived from multiple observational data sets with a strain-based parameterization of finescale hydrographic structure can be used to ameliorate model biases in diapycnal diffusivities from the Estimating the Circulation & Climate of the Ocean (ECCO) framework and the GEOS-5 coupled Earth system model. [...]"

Source: Earth and Space Science Open Archive
Authors: David Trossman et al.
DOI: 10.1002/essoar.10502123.1

Read the full article here.


Understanding Long Island Sound's 'dead zones'

"For the past 25 years, the Environmental Protection Agency and the Connecticut Department of Energy and Environmental Protection have been diligently collecting water samples each month in Long Island Sound (LIS). Recently, the data have been compiled and analyzed, by UConn associate professors of Marine Science Penny Vlahos and Michael Whitney, and other team members, who have begun the task of digging into the data to better understand the biogeochemistry of the Sound. Part of the analysis, called "Nitrogen Budgets for LIS," has been published in the journal Estuarine, Coastal and Shelf Science. [...]"

Source: Phys.org

Read the full article here.


Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

Abstract.

"The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) – levels of which increase as the ocean warms and releases gases – as a whole ocean thermometer. [...]"

Source: Scientific Reports
Authors: L. Resplandy et al.
DOI: 10.1038/s41598-019-56490-z

Read the full article here.


Multidisciplinary Observing in the World Ocean’s Oxygen Minimum Zone Regions: From Climate to Fish — The VOICE Initiative

Abstract.

"Multidisciplinary ocean observing activities provide critical ocean information to satisfy ever-changing socioeconomic needs and require coordinated implementation. The upper oxycline (transition between high and low oxygen waters) is fundamentally important for the ecosystem structure and can be a useful proxy for multiple observing objectives connected to eastern boundary systems (EBSs) that neighbor oxygen minimum zones (OMZs). [...]"

Source: Frontiers in Marine Science
Authors: Véronique Garçon et al.
DOI: 10.3389/fmars.2019.00722

Read the full article here.


Marine animals hold promise for extending ocean monitoring

"An international team of researchers led by the University of Exeter suggests that a wide variety of marine species could be used for monitoring the world's oceans. Using electronic tags, scientists could exploit the natural behavior of sharks, penguins, turtles, seals and other species to fill gaps in our knowledge of the seas.

With three-quarters of the Earth's surface covered with water, having a comprehensive understanding of the oceans is very important in dealing with everything from fishing quotas to climate change. The problem is that the oceans are much bigger than most people realize and many parts aren't easily, if at all, accessible."

Source: New Atlas

Read the full article here.


Ocean studies look at microscopic diversity and activity across entire planet

"In an effort to reverse the decline in the health of the world's oceans, the United Nations (UN) has declared 2021 to 2030 to be the Decade of Ocean Science for Sustainable Development. One key requirement for the scientific initiative is data on existing global ocean conditions. An important trove of data is already available thanks to the Tara Oceans expedition, an international, interdisciplinary enterprise that collected 35,000 samples from all the world's oceans between 2009 and 2013. The samples were collected by researchers aboard one schooner, the Tara, at depths ranging from the surface to 1,000 meters deep. [...]"

Source: Science Daily

Read the full article here.


Showing 1 - 10 of 26 results.
Items per Page 10
of 3