News

The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model

Abstract.

"Particle aggregation determines the particle flux length scale and affects the marine oxygen concentration and thus the volume of oxygen minimum zones (OMZs) that are of special relevance for ocean nutrient cycles and marine ecosystems and that have been found to expand faster than can be explained by current state-of-the-art models. [...]"

Source: Biogeosciences
Author: Daniela Niemeyer et al.
DOI: 10.5194/bg-16-3095-2019

Read the full article here.


The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling

Abstract.

"Oceanic emissions of the climate-relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) are a major source to their atmospheric budget. Their current and future emission estimates are still uncertain due to incomplete process understanding and therefore inexact quantification across different biogeochemical regimes.  [...]"

Source: Ocean Science
Authors: Sinikka T. Lennartz et al.
DOI: 10.5194/os-15-1071-2019

Read the full article here.


Study tests resilience of the Salish Sea to climate change impacts

"What will the ecology of the Salish Sea look like in the year 2095?

It's an important question for millions of people who live along and near the shores of this intricate, interconnected network of coastal waterways, inlets, bays, and estuaries that encompasses Puget Sound in Washington state and the deep waters of southwest British Columbia. A research team from PNNL found that the inner Salish Sea is resilient, and that future response to climate change—while significant—will be less severe than the open ocean. [...]"

Source: phys.org

Read the full article here.


High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site

Abstract.

"Methane (CH4) in marine sediments has the potential to contribute to changes in the ocean and climate system. Physical and biochemical processes that are difficult to quantify with current standard methods such as acoustic surveys and discrete sampling govern the distribution of dissolved CH4 in oceans and lakes. [...]"

Source: Ocean Science
Authors: Pär Jansson et al. 
DOI: 10.5194/os-15-1055-2019

Read the full article here.


Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox

Abstract.

"Oxygen is a prerequisite for all large and motile animals. It is a puzzling paradox that fossils of benthic animals are often found in black shales with geochemical evidence for deposition in marine environments with anoxic and sulfidic bottom waters. It is debated whether the geochemical proxies are unreliable, affected by diagenesis, or whether the fossils are transported from afar or perhaps were not benthic.  [...]"

Source: Scientific Reports
Authors: Tais W. Dahl et al.
DOI: 10.1038/s41598-019-48123-2

Read the full article here.


Global Perspectives on Observing Ocean Boundary Current Systems

Abstract.

"Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations. [...]"

Source: Frontiers in Marine Science
Authors: Robert E. Todd et al.
DOI: 10.3389/fmars.2019.00423

Read the full article here.


Microbial diversity of the Arabian Sea in the Oxygen minimum zones by metagenomics approach

Abstract.

"Large oxygen depleted areas known as oxygen minimum zones (OMZ) have been observed in the Arabian Sea and recent reports indicate that these areas are expanding at an alarming rate. In marine waters, oxygen depletion may also be related to global warming and the temperature rise, acidification and deoxygenation can lead to major consequences wherein the plants, fish and other biota will struggle to survive in the ecosystem. [...]"

Source: bioRxiv
Authors: Mandar S Paingankar et al.
DOI: 10.1101/731828

Read the full article here.


Subseafloor life and its biogeochemical impacts

Abstract.

"Subseafloor microbial activities are central to Earth’s biogeochemical cycles. They control Earth’s surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources. In this review, we evaluate present understanding of subseafloor microbes and their activities, identify research gaps, and recommend approaches to filling those gaps. [...]"

Source: Nature Communications
Authors: Steven D’Hondt et al.
DOI: 10.1038/s41467-019-11450-z

Read the full article here.


Climate change could shrink oyster habitat in California

"Ocean acidification is bad news for shellfish, as it makes it harder for them to form their calcium-based shells. But climate change could also have multiple other impacts that make California bays less hospitable to shelled organisms like oysters, which are a key part of the food web.

Changes to water temperature and chemistry resulting from human-caused climate change could shrink the prime habitat and farming locations for oysters in California bays, according to a new study from the University of California, Davis. [...]"

Source: Science Daily

Read the full article here.


The Sensitivity of Future Ocean Oxygen to Changes in Ocean Circulation

Abstract.

"A decline in global ocean oxygen concentrations has been observed over the twentieth century and is predicted to continue under future climate change. We use a unique modeling framework to understand how the perturbed ocean circulation may influence the rate of ocean deoxygenation in response to a doubling of atmospheric CO2 and associated global warming. [...]"

Source: Global Biogeochemical Cycles
Authors: Jaime B. Palter and David S. Trossman
DOI: 10.1002/2017GB005777

Read the full article here.


Showing 1 - 10 of 542 results.
Items per Page 10
of 55